Properties

Label 2-261-261.101-c1-0-5
Degree $2$
Conductor $261$
Sign $-0.704 - 0.709i$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.942 + 2.16i)2-s + (−1.73 + 0.0507i)3-s + (−2.41 − 2.60i)4-s + (3.53 + 0.532i)5-s + (1.52 − 3.78i)6-s + (2.36 + 2.19i)7-s + (3.45 − 1.20i)8-s + (2.99 − 0.175i)9-s + (−4.48 + 7.13i)10-s + (4.16 − 3.58i)11-s + (4.31 + 4.38i)12-s + (−3.02 + 4.43i)13-s + (−6.96 + 3.04i)14-s + (−6.14 − 0.743i)15-s + (−0.113 + 1.52i)16-s + (0.320 + 0.320i)17-s + ⋯
L(s)  = 1  + (−0.666 + 1.52i)2-s + (−0.999 + 0.0292i)3-s + (−1.20 − 1.30i)4-s + (1.58 + 0.238i)5-s + (0.621 − 1.54i)6-s + (0.893 + 0.829i)7-s + (1.22 − 0.427i)8-s + (0.998 − 0.0585i)9-s + (−1.41 + 2.25i)10-s + (1.25 − 1.08i)11-s + (1.24 + 1.26i)12-s + (−0.838 + 1.23i)13-s + (−1.86 + 0.812i)14-s + (−1.58 − 0.191i)15-s + (−0.0284 + 0.380i)16-s + (0.0776 + 0.0776i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.704 - 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $-0.704 - 0.709i$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{261} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ -0.704 - 0.709i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.343041 + 0.824375i\)
\(L(\frac12)\) \(\approx\) \(0.343041 + 0.824375i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.73 - 0.0507i)T \)
29 \( 1 + (-3.80 - 3.80i)T \)
good2 \( 1 + (0.942 - 2.16i)T + (-1.36 - 1.46i)T^{2} \)
5 \( 1 + (-3.53 - 0.532i)T + (4.77 + 1.47i)T^{2} \)
7 \( 1 + (-2.36 - 2.19i)T + (0.523 + 6.98i)T^{2} \)
11 \( 1 + (-4.16 + 3.58i)T + (1.63 - 10.8i)T^{2} \)
13 \( 1 + (3.02 - 4.43i)T + (-4.74 - 12.1i)T^{2} \)
17 \( 1 + (-0.320 - 0.320i)T + 17iT^{2} \)
19 \( 1 + (1.53 + 0.962i)T + (8.24 + 17.1i)T^{2} \)
23 \( 1 + (2.14 + 0.843i)T + (16.8 + 15.6i)T^{2} \)
31 \( 1 + (3.49 - 2.57i)T + (9.13 - 29.6i)T^{2} \)
37 \( 1 + (1.06 + 3.04i)T + (-28.9 + 23.0i)T^{2} \)
41 \( 1 + (-0.766 - 0.205i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (3.30 - 4.48i)T + (-12.6 - 41.0i)T^{2} \)
47 \( 1 + (6.95 + 8.08i)T + (-7.00 + 46.4i)T^{2} \)
53 \( 1 + (-5.65 - 4.50i)T + (11.7 + 51.6i)T^{2} \)
59 \( 1 + (2.18 - 1.26i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-3.14 + 0.117i)T + (60.8 - 4.55i)T^{2} \)
67 \( 1 + (3.09 - 0.232i)T + (66.2 - 9.98i)T^{2} \)
71 \( 1 + (-6.93 + 3.33i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (0.346 - 3.07i)T + (-71.1 - 16.2i)T^{2} \)
79 \( 1 + (-1.51 + 7.99i)T + (-73.5 - 28.8i)T^{2} \)
83 \( 1 + (-4.05 + 13.1i)T + (-68.5 - 46.7i)T^{2} \)
89 \( 1 + (6.94 - 0.782i)T + (86.7 - 19.8i)T^{2} \)
97 \( 1 + (3.86 + 7.30i)T + (-54.6 + 80.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.18760818946629453825574446925, −11.29880971825678455161262558330, −10.10042134544011174001540661031, −9.228619310074496963501413001233, −8.620715703758396228637305939979, −6.99997174037724354628355013101, −6.35327367603866034478042385343, −5.66001903008155474325797244820, −4.80283542580538541282275430375, −1.70582819848014279026068156788, 1.16536544184547951963344689542, 2.08878574475028847823387699995, 4.18101902599853369480873287184, 5.22276017073838258683312448932, 6.57295461610599737290345041268, 7.920128392127259030175325991719, 9.435993041135379701184633824491, 9.988810984706895561963064395492, 10.50231632113624699752957615053, 11.51232868135763234485841986771

Graph of the $Z$-function along the critical line