L(s) = 1 | + (−0.942 + 2.16i)2-s + (−1.73 + 0.0507i)3-s + (−2.41 − 2.60i)4-s + (3.53 + 0.532i)5-s + (1.52 − 3.78i)6-s + (2.36 + 2.19i)7-s + (3.45 − 1.20i)8-s + (2.99 − 0.175i)9-s + (−4.48 + 7.13i)10-s + (4.16 − 3.58i)11-s + (4.31 + 4.38i)12-s + (−3.02 + 4.43i)13-s + (−6.96 + 3.04i)14-s + (−6.14 − 0.743i)15-s + (−0.113 + 1.52i)16-s + (0.320 + 0.320i)17-s + ⋯ |
L(s) = 1 | + (−0.666 + 1.52i)2-s + (−0.999 + 0.0292i)3-s + (−1.20 − 1.30i)4-s + (1.58 + 0.238i)5-s + (0.621 − 1.54i)6-s + (0.893 + 0.829i)7-s + (1.22 − 0.427i)8-s + (0.998 − 0.0585i)9-s + (−1.41 + 2.25i)10-s + (1.25 − 1.08i)11-s + (1.24 + 1.26i)12-s + (−0.838 + 1.23i)13-s + (−1.86 + 0.812i)14-s + (−1.58 − 0.191i)15-s + (−0.0284 + 0.380i)16-s + (0.0776 + 0.0776i)17-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)(−0.704−0.709i)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)(−0.704−0.709i)Λ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
−0.704−0.709i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), −0.704−0.709i)
|
Particular Values
L(1) |
≈ |
0.343041+0.824375i |
L(21) |
≈ |
0.343041+0.824375i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.73−0.0507i)T |
| 29 | 1+(−3.80−3.80i)T |
good | 2 | 1+(0.942−2.16i)T+(−1.36−1.46i)T2 |
| 5 | 1+(−3.53−0.532i)T+(4.77+1.47i)T2 |
| 7 | 1+(−2.36−2.19i)T+(0.523+6.98i)T2 |
| 11 | 1+(−4.16+3.58i)T+(1.63−10.8i)T2 |
| 13 | 1+(3.02−4.43i)T+(−4.74−12.1i)T2 |
| 17 | 1+(−0.320−0.320i)T+17iT2 |
| 19 | 1+(1.53+0.962i)T+(8.24+17.1i)T2 |
| 23 | 1+(2.14+0.843i)T+(16.8+15.6i)T2 |
| 31 | 1+(3.49−2.57i)T+(9.13−29.6i)T2 |
| 37 | 1+(1.06+3.04i)T+(−28.9+23.0i)T2 |
| 41 | 1+(−0.766−0.205i)T+(35.5+20.5i)T2 |
| 43 | 1+(3.30−4.48i)T+(−12.6−41.0i)T2 |
| 47 | 1+(6.95+8.08i)T+(−7.00+46.4i)T2 |
| 53 | 1+(−5.65−4.50i)T+(11.7+51.6i)T2 |
| 59 | 1+(2.18−1.26i)T+(29.5−51.0i)T2 |
| 61 | 1+(−3.14+0.117i)T+(60.8−4.55i)T2 |
| 67 | 1+(3.09−0.232i)T+(66.2−9.98i)T2 |
| 71 | 1+(−6.93+3.33i)T+(44.2−55.5i)T2 |
| 73 | 1+(0.346−3.07i)T+(−71.1−16.2i)T2 |
| 79 | 1+(−1.51+7.99i)T+(−73.5−28.8i)T2 |
| 83 | 1+(−4.05+13.1i)T+(−68.5−46.7i)T2 |
| 89 | 1+(6.94−0.782i)T+(86.7−19.8i)T2 |
| 97 | 1+(3.86+7.30i)T+(−54.6+80.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.18760818946629453825574446925, −11.29880971825678455161262558330, −10.10042134544011174001540661031, −9.228619310074496963501413001233, −8.620715703758396228637305939979, −6.99997174037724354628355013101, −6.35327367603866034478042385343, −5.66001903008155474325797244820, −4.80283542580538541282275430375, −1.70582819848014279026068156788,
1.16536544184547951963344689542, 2.08878574475028847823387699995, 4.18101902599853369480873287184, 5.22276017073838258683312448932, 6.57295461610599737290345041268, 7.920128392127259030175325991719, 9.435993041135379701184633824491, 9.988810984706895561963064395492, 10.50231632113624699752957615053, 11.51232868135763234485841986771