L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.309 − 0.951i)6-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + (0.309 − 0.951i)11-s + (0.809 − 0.587i)12-s + (−0.809 + 0.587i)16-s + (−0.5 + 0.363i)17-s − 0.999·18-s + (−1.80 − 0.587i)19-s + (0.809 − 0.587i)22-s + 24-s + (−0.309 + 0.951i)25-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.309 − 0.951i)6-s + (−0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + (0.309 − 0.951i)11-s + (0.809 − 0.587i)12-s + (−0.809 + 0.587i)16-s + (−0.5 + 0.363i)17-s − 0.999·18-s + (−1.80 − 0.587i)19-s + (0.809 − 0.587i)22-s + 24-s + (−0.309 + 0.951i)25-s + ⋯ |
Λ(s)=(=(264s/2ΓC(s)L(s)(0.970−0.242i)Λ(1−s)
Λ(s)=(=(264s/2ΓC(s)L(s)(0.970−0.242i)Λ(1−s)
Degree: |
2 |
Conductor: |
264
= 23⋅3⋅11
|
Sign: |
0.970−0.242i
|
Analytic conductor: |
0.131753 |
Root analytic conductor: |
0.362978 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ264(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 264, ( :0), 0.970−0.242i)
|
Particular Values
L(21) |
≈ |
0.9878336230 |
L(21) |
≈ |
0.9878336230 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 3 | 1+(0.309+0.951i)T |
| 11 | 1+(−0.309+0.951i)T |
good | 5 | 1+(0.309−0.951i)T2 |
| 7 | 1+(−0.809+0.587i)T2 |
| 13 | 1+(0.309+0.951i)T2 |
| 17 | 1+(0.5−0.363i)T+(0.309−0.951i)T2 |
| 19 | 1+(1.80+0.587i)T+(0.809+0.587i)T2 |
| 23 | 1+T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(0.809−0.587i)T2 |
| 41 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 43 | 1−1.17iT−T2 |
| 47 | 1+(−0.809−0.587i)T2 |
| 53 | 1+(0.309+0.951i)T2 |
| 59 | 1+(−1.80+0.587i)T+(0.809−0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1−0.618T+T2 |
| 71 | 1+(0.309−0.951i)T2 |
| 73 | 1+(−1.11+0.363i)T+(0.809−0.587i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(1.30−0.951i)T+(0.309−0.951i)T2 |
| 89 | 1−1.17iT−T2 |
| 97 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53754645894466774899537708340, −11.42029206930293426009731281449, −10.88320607462122253728744546217, −8.863944082603331619986402463646, −8.183784225832969237458163601321, −6.99820737920006169748928740343, −6.28867917791229953829435959466, −5.34806349899617237912977398325, −3.90665421499112695506344499848, −2.34333803514186724896722920634,
2.37362098857690372097412503603, 3.99531835212255375205442183375, 4.60400992516194197325476296894, 5.86363959105077971020893479102, 6.79997513346974898580798213337, 8.598551555791422644854415597380, 9.715693376172804525377898265638, 10.36469697255195961855380329691, 11.23219503082205516994490223784, 12.11760008892500796427656830928