L(s) = 1 | − 2-s + 4-s − 4.41·5-s − 8-s + 4.41·10-s − 11-s − 4.24·13-s + 16-s + 2.82·17-s + 5.82·19-s − 4.41·20-s + 22-s + 5.24·23-s + 14.4·25-s + 4.24·26-s − 0.242·29-s + 7.24·31-s − 32-s − 2.82·34-s + 5.24·37-s − 5.82·38-s + 4.41·40-s − 6.17·41-s − 6.48·43-s − 44-s − 5.24·46-s − 11.6·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 1.97·5-s − 0.353·8-s + 1.39·10-s − 0.301·11-s − 1.17·13-s + 0.250·16-s + 0.685·17-s + 1.33·19-s − 0.987·20-s + 0.213·22-s + 1.09·23-s + 2.89·25-s + 0.832·26-s − 0.0450·29-s + 1.30·31-s − 0.176·32-s − 0.485·34-s + 0.861·37-s − 0.945·38-s + 0.697·40-s − 0.963·41-s − 0.988·43-s − 0.150·44-s − 0.772·46-s − 1.70·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4.41T + 5T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 + 4.24T + 13T^{2} \) |
| 17 | \( 1 - 2.82T + 17T^{2} \) |
| 19 | \( 1 - 5.82T + 19T^{2} \) |
| 23 | \( 1 - 5.24T + 23T^{2} \) |
| 29 | \( 1 + 0.242T + 29T^{2} \) |
| 31 | \( 1 - 7.24T + 31T^{2} \) |
| 37 | \( 1 - 5.24T + 37T^{2} \) |
| 41 | \( 1 + 6.17T + 41T^{2} \) |
| 43 | \( 1 + 6.48T + 43T^{2} \) |
| 47 | \( 1 + 11.6T + 47T^{2} \) |
| 53 | \( 1 - 8T + 53T^{2} \) |
| 59 | \( 1 + 11.6T + 59T^{2} \) |
| 61 | \( 1 + 14.8T + 61T^{2} \) |
| 67 | \( 1 + 1.75T + 67T^{2} \) |
| 71 | \( 1 + 1.24T + 71T^{2} \) |
| 73 | \( 1 - 3.17T + 73T^{2} \) |
| 79 | \( 1 + 6.48T + 79T^{2} \) |
| 83 | \( 1 - 3.89T + 83T^{2} \) |
| 89 | \( 1 + 3.34T + 89T^{2} \) |
| 97 | \( 1 - 11.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.286792238368949617331425222827, −7.70760115156622673825612550338, −7.34433610062321642573310067817, −6.53300645337732712080617026304, −5.12045544713022865077138295735, −4.60330205049140923825091341255, −3.32796979722954235934600701890, −2.90954569201735560829534542417, −1.12483444901762346494863767768, 0,
1.12483444901762346494863767768, 2.90954569201735560829534542417, 3.32796979722954235934600701890, 4.60330205049140923825091341255, 5.12045544713022865077138295735, 6.53300645337732712080617026304, 7.34433610062321642573310067817, 7.70760115156622673825612550338, 8.286792238368949617331425222827