Properties

Label 2-2646-1.1-c1-0-23
Degree $2$
Conductor $2646$
Sign $1$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s − 2·11-s + 13-s + 16-s − 3·17-s + 4·19-s + 2·20-s − 2·22-s + 3·23-s − 25-s + 26-s + 7·29-s + 11·31-s + 32-s − 3·34-s − 6·37-s + 4·38-s + 2·40-s + 6·41-s + 43-s − 2·44-s + 3·46-s + 8·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s − 0.603·11-s + 0.277·13-s + 1/4·16-s − 0.727·17-s + 0.917·19-s + 0.447·20-s − 0.426·22-s + 0.625·23-s − 1/5·25-s + 0.196·26-s + 1.29·29-s + 1.97·31-s + 0.176·32-s − 0.514·34-s − 0.986·37-s + 0.648·38-s + 0.316·40-s + 0.937·41-s + 0.152·43-s − 0.301·44-s + 0.442·46-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.509315152\)
\(L(\frac12)\) \(\approx\) \(3.509315152\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 7 T + p T^{2} \)
31 \( 1 - 11 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 + 7 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 + 11 T + p T^{2} \)
73 \( 1 - 8 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.858491582708342556427559261956, −8.064645491147101931790045387521, −7.13790621913547938209696958174, −6.41371642316385572236262321411, −5.71712844391571482840343232501, −4.99614562130570219516186374288, −4.21966667354524075129226149758, −3.00004241953254677623600625591, −2.38283992470961307825516552466, −1.13028052123358941518074717677, 1.13028052123358941518074717677, 2.38283992470961307825516552466, 3.00004241953254677623600625591, 4.21966667354524075129226149758, 4.99614562130570219516186374288, 5.71712844391571482840343232501, 6.41371642316385572236262321411, 7.13790621913547938209696958174, 8.064645491147101931790045387521, 8.858491582708342556427559261956

Graph of the $Z$-function along the critical line