L(s) = 1 | + 2-s + 4-s − 1.41·5-s + 8-s − 1.41·10-s + 2.24·11-s − 3·13-s + 16-s − 4.41·17-s − 4.58·19-s − 1.41·20-s + 2.24·22-s − 23-s − 2.99·25-s − 3·26-s − 5.24·29-s + 1.24·31-s + 32-s − 4.41·34-s − 10.4·37-s − 4.58·38-s − 1.41·40-s + 2.82·41-s + 3.24·43-s + 2.24·44-s − 46-s + 7.07·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 0.632·5-s + 0.353·8-s − 0.447·10-s + 0.676·11-s − 0.832·13-s + 0.250·16-s − 1.07·17-s − 1.05·19-s − 0.316·20-s + 0.478·22-s − 0.208·23-s − 0.599·25-s − 0.588·26-s − 0.973·29-s + 0.223·31-s + 0.176·32-s − 0.757·34-s − 1.72·37-s − 0.743·38-s − 0.223·40-s + 0.441·41-s + 0.494·43-s + 0.338·44-s − 0.147·46-s + 1.03·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 1.41T + 5T^{2} \) |
| 11 | \( 1 - 2.24T + 11T^{2} \) |
| 13 | \( 1 + 3T + 13T^{2} \) |
| 17 | \( 1 + 4.41T + 17T^{2} \) |
| 19 | \( 1 + 4.58T + 19T^{2} \) |
| 23 | \( 1 + T + 23T^{2} \) |
| 29 | \( 1 + 5.24T + 29T^{2} \) |
| 31 | \( 1 - 1.24T + 31T^{2} \) |
| 37 | \( 1 + 10.4T + 37T^{2} \) |
| 41 | \( 1 - 2.82T + 41T^{2} \) |
| 43 | \( 1 - 3.24T + 43T^{2} \) |
| 47 | \( 1 - 7.07T + 47T^{2} \) |
| 53 | \( 1 - 11.2T + 53T^{2} \) |
| 59 | \( 1 + 0.171T + 59T^{2} \) |
| 61 | \( 1 + 11.6T + 61T^{2} \) |
| 67 | \( 1 - 13.2T + 67T^{2} \) |
| 71 | \( 1 + 5.48T + 71T^{2} \) |
| 73 | \( 1 + 9.89T + 73T^{2} \) |
| 79 | \( 1 + 10.7T + 79T^{2} \) |
| 83 | \( 1 + 17.3T + 83T^{2} \) |
| 89 | \( 1 - 1.92T + 89T^{2} \) |
| 97 | \( 1 + 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.500793991931724638653489871972, −7.46735537077015873032142628226, −6.99050028109064832252254631565, −6.13500277211491840435553766669, −5.30192695990541561140331364463, −4.21616604767026033961272550955, −3.99537247150537430840121571645, −2.71560876310166327303284802940, −1.80220743335325392270577860498, 0,
1.80220743335325392270577860498, 2.71560876310166327303284802940, 3.99537247150537430840121571645, 4.21616604767026033961272550955, 5.30192695990541561140331364463, 6.13500277211491840435553766669, 6.99050028109064832252254631565, 7.46735537077015873032142628226, 8.500793991931724638653489871972