Properties

Label 2-2646-1.1-c1-0-51
Degree $2$
Conductor $2646$
Sign $-1$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 6·11-s + 5·13-s + 16-s − 6·17-s − 4·19-s − 6·22-s − 6·23-s − 5·25-s + 5·26-s − 6·29-s − 31-s + 32-s − 6·34-s − 37-s − 4·38-s + 6·41-s − 43-s − 6·44-s − 6·46-s + 6·47-s − 5·50-s + 5·52-s + 6·53-s − 6·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.80·11-s + 1.38·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 1.27·22-s − 1.25·23-s − 25-s + 0.980·26-s − 1.11·29-s − 0.179·31-s + 0.176·32-s − 1.02·34-s − 0.164·37-s − 0.648·38-s + 0.937·41-s − 0.152·43-s − 0.904·44-s − 0.884·46-s + 0.875·47-s − 0.707·50-s + 0.693·52-s + 0.824·53-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.322567467361658853622879025591, −7.75571829894035808861745121169, −6.83258442473794854766223031310, −5.91864842852306924737657425731, −5.53634730988965039358149929804, −4.34596400781076763888194778584, −3.84967222428535684217921793847, −2.60629849220782543841100988768, −1.91689542680922239943101317453, 0, 1.91689542680922239943101317453, 2.60629849220782543841100988768, 3.84967222428535684217921793847, 4.34596400781076763888194778584, 5.53634730988965039358149929804, 5.91864842852306924737657425731, 6.83258442473794854766223031310, 7.75571829894035808861745121169, 8.322567467361658853622879025591

Graph of the $Z$-function along the critical line