L(s) = 1 | + 2-s + 4-s + 8-s − 6·11-s + 5·13-s + 16-s − 6·17-s − 4·19-s − 6·22-s − 6·23-s − 5·25-s + 5·26-s − 6·29-s − 31-s + 32-s − 6·34-s − 37-s − 4·38-s + 6·41-s − 43-s − 6·44-s − 6·46-s + 6·47-s − 5·50-s + 5·52-s + 6·53-s − 6·58-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.80·11-s + 1.38·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 1.27·22-s − 1.25·23-s − 25-s + 0.980·26-s − 1.11·29-s − 0.179·31-s + 0.176·32-s − 1.02·34-s − 0.164·37-s − 0.648·38-s + 0.937·41-s − 0.152·43-s − 0.904·44-s − 0.884·46-s + 0.875·47-s − 0.707·50-s + 0.693·52-s + 0.824·53-s − 0.787·58-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−5T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+T+pT2 |
| 37 | 1+T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+T+pT2 |
| 67 | 1+T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+pT2 |
| 97 | 1−17T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.322567467361658853622879025591, −7.75571829894035808861745121169, −6.83258442473794854766223031310, −5.91864842852306924737657425731, −5.53634730988965039358149929804, −4.34596400781076763888194778584, −3.84967222428535684217921793847, −2.60629849220782543841100988768, −1.91689542680922239943101317453, 0,
1.91689542680922239943101317453, 2.60629849220782543841100988768, 3.84967222428535684217921793847, 4.34596400781076763888194778584, 5.53634730988965039358149929804, 5.91864842852306924737657425731, 6.83258442473794854766223031310, 7.75571829894035808861745121169, 8.322567467361658853622879025591