L(s) = 1 | + 2-s − 3-s + 4-s + 2i·5-s − 6-s + (0.866 + 0.5i)7-s + 8-s + 9-s + 2i·10-s + (0.5 + 0.866i)11-s − 12-s + (0.866 + 0.5i)14-s − 2i·15-s + 16-s + (0.5 − 0.866i)17-s + 18-s + ⋯ |
L(s) = 1 | + 2-s − 3-s + 4-s + 2i·5-s − 6-s + (0.866 + 0.5i)7-s + 8-s + 9-s + 2i·10-s + (0.5 + 0.866i)11-s − 12-s + (0.866 + 0.5i)14-s − 2i·15-s + 16-s + (0.5 − 0.866i)17-s + 18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.200 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.200 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.971597268\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.971597268\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 37 | \( 1 - iT \) |
good | 5 | \( 1 - 2iT - T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.576651865487779115605867005167, −7.984838143090963376315065702421, −7.27004219840947574697427896619, −6.74080170838988257635323036004, −6.19943840523013521737338107274, −5.34574614761706370754907764372, −4.53901994322779646355280884674, −3.73203585354155122177891479131, −2.57006299835687468878428135285, −1.92236458969823212868425457315,
1.22097630734855354938861621211, 1.64559591116499920025554879715, 3.81585275138086549106517932102, 4.21994243043075635112543811657, 4.96506311189518886704310911351, 5.75880407151156732546944751865, 5.99145571230371055501214239233, 7.31278641324131355938514636552, 8.063048165179789545291240643804, 8.647561612074441355826861530655