L(s) = 1 | + 2-s − 3-s + 4-s + 2i·5-s − 6-s + (0.866 + 0.5i)7-s + 8-s + 9-s + 2i·10-s + (0.5 + 0.866i)11-s − 12-s + (0.866 + 0.5i)14-s − 2i·15-s + 16-s + (0.5 − 0.866i)17-s + 18-s + ⋯ |
L(s) = 1 | + 2-s − 3-s + 4-s + 2i·5-s − 6-s + (0.866 + 0.5i)7-s + 8-s + 9-s + 2i·10-s + (0.5 + 0.866i)11-s − 12-s + (0.866 + 0.5i)14-s − 2i·15-s + 16-s + (0.5 − 0.866i)17-s + 18-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.200−0.979i)Λ(1−s)
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.200−0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.200−0.979i
|
Analytic conductor: |
1.32950 |
Root analytic conductor: |
1.15304 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(787,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :0), 0.200−0.979i)
|
Particular Values
L(21) |
≈ |
1.971597268 |
L(21) |
≈ |
1.971597268 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 37 | 1−iT |
good | 5 | 1−2iT−T2 |
| 7 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 29 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 31 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 53 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 73 | 1+T2 |
| 79 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.576651865487779115605867005167, −7.984838143090963376315065702421, −7.27004219840947574697427896619, −6.74080170838988257635323036004, −6.19943840523013521737338107274, −5.34574614761706370754907764372, −4.53901994322779646355280884674, −3.73203585354155122177891479131, −2.57006299835687468878428135285, −1.92236458969823212868425457315,
1.22097630734855354938861621211, 1.64559591116499920025554879715, 3.81585275138086549106517932102, 4.21994243043075635112543811657, 4.96506311189518886704310911351, 5.75880407151156732546944751865, 5.99145571230371055501214239233, 7.31278641324131355938514636552, 8.063048165179789545291240643804, 8.647561612074441355826861530655