L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−1 + i)5-s − 7-s + (−0.707 − 0.707i)8-s + 1.41i·10-s + 11-s + (−0.707 + 0.707i)13-s + (−0.707 + 0.707i)14-s − 1.00·16-s + (0.707 + 0.707i)17-s + (−0.707 + 0.707i)19-s + (1.00 + 1.00i)20-s + (0.707 − 0.707i)22-s + (0.707 + 0.707i)23-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−1 + i)5-s − 7-s + (−0.707 − 0.707i)8-s + 1.41i·10-s + 11-s + (−0.707 + 0.707i)13-s + (−0.707 + 0.707i)14-s − 1.00·16-s + (0.707 + 0.707i)17-s + (−0.707 + 0.707i)19-s + (1.00 + 1.00i)20-s + (0.707 − 0.707i)22-s + (0.707 + 0.707i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.045919590\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.045919590\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-0.707 - 0.707i)T \) |
good | 5 | \( 1 + (1 - i)T - iT^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 17 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 19 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 29 | \( 1 + (-1 - i)T + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 + (-1 + i)T - iT^{2} \) |
| 61 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 67 | \( 1 + 1.41T + T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 - iT - T^{2} \) |
| 89 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.472559713564156631207106183397, −8.410998577678810418615313007699, −7.36535524830670398608775862261, −6.52733495964754336849084250535, −6.34361854443983488670577414989, −5.00742235302265401360787886456, −4.04723334864038131897076291148, −3.47193780973884609096448516902, −2.86383398815634168972815678434, −1.50882746121846903581356758917,
0.54988187467455456925364592165, 2.69673579205513706652654966853, 3.46609488298536598015911113412, 4.43459390172165722077128311553, 4.82184871844349074808866633567, 5.91041284891705055915272880482, 6.64816779659899490497414897329, 7.36890426413933048865381406351, 8.077263844721136873787702657043, 8.822113518880359493705864604439