L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.22 − 0.707i)5-s + (−0.866 + 0.5i)7-s + (−0.707 + 0.707i)8-s + (−0.999 + i)10-s + 1.41·11-s + (−0.866 + 0.5i)13-s + (0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (0.707 − 1.22i)17-s + (−1 − 1.73i)19-s + (0.707 − 1.22i)20-s + (−1.36 + 0.366i)22-s + (0.499 − 0.866i)25-s + (0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.22 − 0.707i)5-s + (−0.866 + 0.5i)7-s + (−0.707 + 0.707i)8-s + (−0.999 + i)10-s + 1.41·11-s + (−0.866 + 0.5i)13-s + (0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (0.707 − 1.22i)17-s + (−1 − 1.73i)19-s + (0.707 − 1.22i)20-s + (−1.36 + 0.366i)22-s + (0.499 − 0.866i)25-s + (0.707 − 0.707i)26-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.803+0.595i)Λ(1−s)
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.803+0.595i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.803+0.595i
|
Analytic conductor: |
1.32950 |
Root analytic conductor: |
1.15304 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1675,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :0), 0.803+0.595i)
|
Particular Values
L(21) |
≈ |
0.9181004607 |
L(21) |
≈ |
0.9181004607 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 3 | 1 |
| 37 | 1+iT |
good | 5 | 1+(−1.22+0.707i)T+(0.5−0.866i)T2 |
| 7 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 11 | 1−1.41T+T2 |
| 13 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 17 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 19 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 23 | 1−T2 |
| 29 | 1+1.41iT−T2 |
| 31 | 1−iT−T2 |
| 41 | 1+(−0.5+0.866i)T2 |
| 43 | 1−T+T2 |
| 47 | 1−T2 |
| 53 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.5−0.866i)T2 |
| 73 | 1−T+T2 |
| 79 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 83 | 1+(0.707−1.22i)T+(−0.5−0.866i)T2 |
| 89 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.124306103262496982109492962239, −8.618809233619038206752835727085, −7.24537505610714016671229594261, −6.77546161729457576628675267799, −6.02876532393127750265029763273, −5.36358351016700006355507944701, −4.37219272242696977367482007418, −2.76202061557499899899347122779, −2.15259673257433422354937282219, −0.867700864019320964787933752652,
1.38573769532661485801221645233, 2.21203150578460482511654761869, 3.34453537987329835192038173905, 3.92594159627016850352873045344, 5.68696814130685509270281141990, 6.32027793832515964834124796573, 6.72055904288276824384783638153, 7.63216535415811402654966215610, 8.475064075861241619417275992086, 9.345067508012580169395411474817