Properties

Label 2-2664-296.195-c0-0-2
Degree $2$
Conductor $2664$
Sign $0.803 + 0.595i$
Analytic cond. $1.32950$
Root an. cond. $1.15304$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.22 − 0.707i)5-s + (−0.866 + 0.5i)7-s + (−0.707 + 0.707i)8-s + (−0.999 + i)10-s + 1.41·11-s + (−0.866 + 0.5i)13-s + (0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (0.707 − 1.22i)17-s + (−1 − 1.73i)19-s + (0.707 − 1.22i)20-s + (−1.36 + 0.366i)22-s + (0.499 − 0.866i)25-s + (0.707 − 0.707i)26-s + ⋯
L(s)  = 1  + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.22 − 0.707i)5-s + (−0.866 + 0.5i)7-s + (−0.707 + 0.707i)8-s + (−0.999 + i)10-s + 1.41·11-s + (−0.866 + 0.5i)13-s + (0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (0.707 − 1.22i)17-s + (−1 − 1.73i)19-s + (0.707 − 1.22i)20-s + (−1.36 + 0.366i)22-s + (0.499 − 0.866i)25-s + (0.707 − 0.707i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2664\)    =    \(2^{3} \cdot 3^{2} \cdot 37\)
Sign: $0.803 + 0.595i$
Analytic conductor: \(1.32950\)
Root analytic conductor: \(1.15304\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2664} (1675, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2664,\ (\ :0),\ 0.803 + 0.595i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9181004607\)
\(L(\frac12)\) \(\approx\) \(0.9181004607\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.965 - 0.258i)T \)
3 \( 1 \)
37 \( 1 + iT \)
good5 \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \)
7 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
11 \( 1 - 1.41T + T^{2} \)
13 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
17 \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \)
19 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 + 1.41iT - T^{2} \)
31 \( 1 - iT - T^{2} \)
41 \( 1 + (-0.5 + 0.866i)T^{2} \)
43 \( 1 - T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \)
59 \( 1 + (-0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.5 - 0.866i)T^{2} \)
73 \( 1 - T + T^{2} \)
79 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
83 \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \)
89 \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.124306103262496982109492962239, −8.618809233619038206752835727085, −7.24537505610714016671229594261, −6.77546161729457576628675267799, −6.02876532393127750265029763273, −5.36358351016700006355507944701, −4.37219272242696977367482007418, −2.76202061557499899899347122779, −2.15259673257433422354937282219, −0.867700864019320964787933752652, 1.38573769532661485801221645233, 2.21203150578460482511654761869, 3.34453537987329835192038173905, 3.92594159627016850352873045344, 5.68696814130685509270281141990, 6.32027793832515964834124796573, 6.72055904288276824384783638153, 7.63216535415811402654966215610, 8.475064075861241619417275992086, 9.345067508012580169395411474817

Graph of the $Z$-function along the critical line