L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.22 − 0.707i)5-s + (−0.866 + 0.5i)7-s + (−0.707 + 0.707i)8-s + (−0.999 + i)10-s + 1.41·11-s + (−0.866 + 0.5i)13-s + (0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (0.707 − 1.22i)17-s + (−1 − 1.73i)19-s + (0.707 − 1.22i)20-s + (−1.36 + 0.366i)22-s + (0.499 − 0.866i)25-s + (0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.22 − 0.707i)5-s + (−0.866 + 0.5i)7-s + (−0.707 + 0.707i)8-s + (−0.999 + i)10-s + 1.41·11-s + (−0.866 + 0.5i)13-s + (0.707 − 0.707i)14-s + (0.500 − 0.866i)16-s + (0.707 − 1.22i)17-s + (−1 − 1.73i)19-s + (0.707 − 1.22i)20-s + (−1.36 + 0.366i)22-s + (0.499 − 0.866i)25-s + (0.707 − 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9181004607\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9181004607\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + iT \) |
good | 5 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - 1.41T + T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.124306103262496982109492962239, −8.618809233619038206752835727085, −7.24537505610714016671229594261, −6.77546161729457576628675267799, −6.02876532393127750265029763273, −5.36358351016700006355507944701, −4.37219272242696977367482007418, −2.76202061557499899899347122779, −2.15259673257433422354937282219, −0.867700864019320964787933752652,
1.38573769532661485801221645233, 2.21203150578460482511654761869, 3.34453537987329835192038173905, 3.92594159627016850352873045344, 5.68696814130685509270281141990, 6.32027793832515964834124796573, 6.72055904288276824384783638153, 7.63216535415811402654966215610, 8.475064075861241619417275992086, 9.345067508012580169395411474817