L(s) = 1 | + (0.400 − 1.75i)2-s + (−2.02 − 0.974i)4-s + (0.623 − 0.781i)5-s + (−0.222 − 0.974i)7-s + (−1.40 + 1.75i)8-s + (−0.222 − 0.974i)9-s + (−1.12 − 1.40i)10-s + (−0.222 + 0.974i)11-s + (0.0990 − 0.433i)13-s − 1.80·14-s + (1.12 + 1.40i)16-s + (−1.12 + 0.541i)17-s − 1.80·18-s + (−2.02 + 0.974i)20-s + (1.62 + 0.781i)22-s + ⋯ |
L(s) = 1 | + (0.400 − 1.75i)2-s + (−2.02 − 0.974i)4-s + (0.623 − 0.781i)5-s + (−0.222 − 0.974i)7-s + (−1.40 + 1.75i)8-s + (−0.222 − 0.974i)9-s + (−1.12 − 1.40i)10-s + (−0.222 + 0.974i)11-s + (0.0990 − 0.433i)13-s − 1.80·14-s + (1.12 + 1.40i)16-s + (−1.12 + 0.541i)17-s − 1.80·18-s + (−2.02 + 0.974i)20-s + (1.62 + 0.781i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 - 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 - 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.175276833\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.175276833\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.623 + 0.781i)T \) |
| 7 | \( 1 + (0.222 + 0.974i)T \) |
| 11 | \( 1 + (0.222 - 0.974i)T \) |
good | 2 | \( 1 + (-0.400 + 1.75i)T + (-0.900 - 0.433i)T^{2} \) |
| 3 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 13 | \( 1 + (-0.0990 + 0.433i)T + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + (1.12 - 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 29 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.277 + 0.347i)T + (-0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 + (0.277 + 0.347i)T + (-0.222 + 0.974i)T^{2} \) |
| 61 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-1.62 - 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (0.277 + 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (0.445 + 1.94i)T + (-0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.0990 - 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.907813485557227206725484982560, −8.105446911156888602132612842448, −6.79490691067171823247071494875, −6.02739009899954196266417031280, −4.88111949697985815194767182531, −4.41453483732496577930761410258, −3.63213090052810381425084531968, −2.63030301991671303054168064457, −1.66666898889664240597976311163, −0.66420208121727545364211250261,
2.32093845688993261484988632149, 3.11736329510512747983408362564, 4.42740974241054726342716054016, 5.20637601679095507984891318945, 5.83305309517963121809262169677, 6.45554149769377218489736544849, 6.97150096717538988770257263991, 8.020793456000352868939736123277, 8.482436954345827448653835620565, 9.190505982028224704526152455336