L(s) = 1 | + (0.400 − 1.75i)2-s + (−2.02 − 0.974i)4-s + (0.623 − 0.781i)5-s + (−0.222 − 0.974i)7-s + (−1.40 + 1.75i)8-s + (−0.222 − 0.974i)9-s + (−1.12 − 1.40i)10-s + (−0.222 + 0.974i)11-s + (0.0990 − 0.433i)13-s − 1.80·14-s + (1.12 + 1.40i)16-s + (−1.12 + 0.541i)17-s − 1.80·18-s + (−2.02 + 0.974i)20-s + (1.62 + 0.781i)22-s + ⋯ |
L(s) = 1 | + (0.400 − 1.75i)2-s + (−2.02 − 0.974i)4-s + (0.623 − 0.781i)5-s + (−0.222 − 0.974i)7-s + (−1.40 + 1.75i)8-s + (−0.222 − 0.974i)9-s + (−1.12 − 1.40i)10-s + (−0.222 + 0.974i)11-s + (0.0990 − 0.433i)13-s − 1.80·14-s + (1.12 + 1.40i)16-s + (−1.12 + 0.541i)17-s − 1.80·18-s + (−2.02 + 0.974i)20-s + (1.62 + 0.781i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.462−0.886i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(−0.462−0.886i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
−0.462−0.886i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(1044,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), −0.462−0.886i)
|
Particular Values
L(21) |
≈ |
1.175276833 |
L(21) |
≈ |
1.175276833 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.623+0.781i)T |
| 7 | 1+(0.222+0.974i)T |
| 11 | 1+(0.222−0.974i)T |
good | 2 | 1+(−0.400+1.75i)T+(−0.900−0.433i)T2 |
| 3 | 1+(0.222+0.974i)T2 |
| 13 | 1+(−0.0990+0.433i)T+(−0.900−0.433i)T2 |
| 17 | 1+(1.12−0.541i)T+(0.623−0.781i)T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.623−0.781i)T2 |
| 29 | 1+(−0.623+0.781i)T2 |
| 31 | 1−2T+T2 |
| 37 | 1+(−0.623+0.781i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(0.277+0.347i)T+(−0.222+0.974i)T2 |
| 47 | 1+(0.900+0.433i)T2 |
| 53 | 1+(−0.623−0.781i)T2 |
| 59 | 1+(0.277+0.347i)T+(−0.222+0.974i)T2 |
| 61 | 1+(−0.623+0.781i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−1.62−0.781i)T+(0.623+0.781i)T2 |
| 73 | 1+(0.277+1.21i)T+(−0.900+0.433i)T2 |
| 79 | 1−T2 |
| 83 | 1+(0.445+1.94i)T+(−0.900+0.433i)T2 |
| 89 | 1+(−0.0990−0.433i)T+(−0.900+0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.907813485557227206725484982560, −8.105446911156888602132612842448, −6.79490691067171823247071494875, −6.02739009899954196266417031280, −4.88111949697985815194767182531, −4.41453483732496577930761410258, −3.63213090052810381425084531968, −2.63030301991671303054168064457, −1.66666898889664240597976311163, −0.66420208121727545364211250261,
2.32093845688993261484988632149, 3.11736329510512747983408362564, 4.42740974241054726342716054016, 5.20637601679095507984891318945, 5.83305309517963121809262169677, 6.45554149769377218489736544849, 6.97150096717538988770257263991, 8.020793456000352868939736123277, 8.482436954345827448653835620565, 9.190505982028224704526152455336