L(s) = 1 | + (1.88 + 0.284i)2-s + (2.53 + 0.781i)4-s + (0.0747 + 0.997i)5-s + (−0.623 − 0.781i)7-s + (2.84 + 1.37i)8-s + (0.365 − 0.930i)9-s + (−0.142 + 1.90i)10-s + (0.365 + 0.930i)11-s + (−0.455 + 0.571i)13-s + (−0.955 − 1.65i)14-s + (2.79 + 1.90i)16-s + (−1.32 − 1.22i)17-s + (0.955 − 1.65i)18-s + (−0.590 + 2.58i)20-s + (0.425 + 1.86i)22-s + ⋯ |
L(s) = 1 | + (1.88 + 0.284i)2-s + (2.53 + 0.781i)4-s + (0.0747 + 0.997i)5-s + (−0.623 − 0.781i)7-s + (2.84 + 1.37i)8-s + (0.365 − 0.930i)9-s + (−0.142 + 1.90i)10-s + (0.365 + 0.930i)11-s + (−0.455 + 0.571i)13-s + (−0.955 − 1.65i)14-s + (2.79 + 1.90i)16-s + (−1.32 − 1.22i)17-s + (0.955 − 1.65i)18-s + (−0.590 + 2.58i)20-s + (0.425 + 1.86i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.718−0.695i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.718−0.695i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
0.718−0.695i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(1264,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), 0.718−0.695i)
|
Particular Values
L(21) |
≈ |
3.717719503 |
L(21) |
≈ |
3.717719503 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.0747−0.997i)T |
| 7 | 1+(0.623+0.781i)T |
| 11 | 1+(−0.365−0.930i)T |
good | 2 | 1+(−1.88−0.284i)T+(0.955+0.294i)T2 |
| 3 | 1+(−0.365+0.930i)T2 |
| 13 | 1+(0.455−0.571i)T+(−0.222−0.974i)T2 |
| 17 | 1+(1.32+1.22i)T+(0.0747+0.997i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.0747+0.997i)T2 |
| 29 | 1+(0.900+0.433i)T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.826+0.563i)T2 |
| 41 | 1+(−0.623−0.781i)T2 |
| 43 | 1+(1.78−0.858i)T+(0.623−0.781i)T2 |
| 47 | 1+(−0.955−0.294i)T2 |
| 53 | 1+(−0.826−0.563i)T2 |
| 59 | 1+(−0.0546+0.728i)T+(−0.988−0.149i)T2 |
| 61 | 1+(−0.826+0.563i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(0.425+1.86i)T+(−0.900+0.433i)T2 |
| 73 | 1+(−1.63+0.246i)T+(0.955−0.294i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(−0.623−0.781i)T+(−0.222+0.974i)T2 |
| 89 | 1+(0.722−1.84i)T+(−0.733−0.680i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.424032637345551973859517560885, −7.74757345638506957335557577767, −7.08333171457563283089778138660, −6.52522053441582027905092448905, −6.44520549275085876620014555915, −4.98839888120436212650780441956, −4.32736100716790466135109822015, −3.68952737293232065767468327150, −2.87021352539814799554379538969, −1.99561542600636553158483207716,
1.63126418458918919616004466791, 2.45171403427100903590569369929, 3.43203423268548854165984110148, 4.26690701340183357443775992708, 5.02529617027298167675602694040, 5.59221013494507281117986730606, 6.27483089073410796940817337262, 7.00153926577918254218642432809, 8.208946612744423351956174304086, 8.759190690588576113204841214304