L(s) = 1 | + (1.88 + 0.284i)2-s + (2.53 + 0.781i)4-s + (0.0747 + 0.997i)5-s + (−0.623 − 0.781i)7-s + (2.84 + 1.37i)8-s + (0.365 − 0.930i)9-s + (−0.142 + 1.90i)10-s + (0.365 + 0.930i)11-s + (−0.455 + 0.571i)13-s + (−0.955 − 1.65i)14-s + (2.79 + 1.90i)16-s + (−1.32 − 1.22i)17-s + (0.955 − 1.65i)18-s + (−0.590 + 2.58i)20-s + (0.425 + 1.86i)22-s + ⋯ |
L(s) = 1 | + (1.88 + 0.284i)2-s + (2.53 + 0.781i)4-s + (0.0747 + 0.997i)5-s + (−0.623 − 0.781i)7-s + (2.84 + 1.37i)8-s + (0.365 − 0.930i)9-s + (−0.142 + 1.90i)10-s + (0.365 + 0.930i)11-s + (−0.455 + 0.571i)13-s + (−0.955 − 1.65i)14-s + (2.79 + 1.90i)16-s + (−1.32 − 1.22i)17-s + (0.955 − 1.65i)18-s + (−0.590 + 2.58i)20-s + (0.425 + 1.86i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.717719503\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.717719503\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.0747 - 0.997i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (-0.365 - 0.930i)T \) |
good | 2 | \( 1 + (-1.88 - 0.284i)T + (0.955 + 0.294i)T^{2} \) |
| 3 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 13 | \( 1 + (0.455 - 0.571i)T + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + (1.32 + 1.22i)T + (0.0747 + 0.997i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 29 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 41 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 43 | \( 1 + (1.78 - 0.858i)T + (0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 53 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 59 | \( 1 + (-0.0546 + 0.728i)T + (-0.988 - 0.149i)T^{2} \) |
| 61 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.425 + 1.86i)T + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (-1.63 + 0.246i)T + (0.955 - 0.294i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.623 - 0.781i)T + (-0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (0.722 - 1.84i)T + (-0.733 - 0.680i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.424032637345551973859517560885, −7.74757345638506957335557577767, −7.08333171457563283089778138660, −6.52522053441582027905092448905, −6.44520549275085876620014555915, −4.98839888120436212650780441956, −4.32736100716790466135109822015, −3.68952737293232065767468327150, −2.87021352539814799554379538969, −1.99561542600636553158483207716,
1.63126418458918919616004466791, 2.45171403427100903590569369929, 3.43203423268548854165984110148, 4.26690701340183357443775992708, 5.02529617027298167675602694040, 5.59221013494507281117986730606, 6.27483089073410796940817337262, 7.00153926577918254218642432809, 8.208946612744423351956174304086, 8.759190690588576113204841214304