L(s) = 1 | + 3·3-s − 2i·5-s + i·7-s + 6·9-s − 5i·11-s − 6i·15-s − 3·17-s + 3i·19-s + 3i·21-s + 23-s + 25-s + 9·27-s − 29-s + 8i·31-s − 15i·33-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 0.894i·5-s + 0.377i·7-s + 2·9-s − 1.50i·11-s − 1.54i·15-s − 0.727·17-s + 0.688i·19-s + 0.654i·21-s + 0.208·23-s + 0.200·25-s + 1.73·27-s − 0.185·29-s + 1.43i·31-s − 2.61i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.53474 - 0.767458i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.53474 - 0.767458i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 3T + 3T^{2} \) |
| 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 - iT - 7T^{2} \) |
| 11 | \( 1 + 5iT - 11T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 - 3iT - 19T^{2} \) |
| 23 | \( 1 - T + 23T^{2} \) |
| 29 | \( 1 + T + 29T^{2} \) |
| 31 | \( 1 - 8iT - 31T^{2} \) |
| 37 | \( 1 - 3iT - 37T^{2} \) |
| 41 | \( 1 + 3iT - 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 - 4iT - 47T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 - 5iT - 59T^{2} \) |
| 61 | \( 1 + 5T + 61T^{2} \) |
| 67 | \( 1 + 7iT - 67T^{2} \) |
| 71 | \( 1 - 11iT - 71T^{2} \) |
| 73 | \( 1 - 14iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 12iT - 83T^{2} \) |
| 89 | \( 1 + 9iT - 89T^{2} \) |
| 97 | \( 1 - iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17202881622040707764955737291, −9.127544497112870507264193080840, −8.662746854602289561990604808525, −8.261328396577919443065384834842, −7.15694249095802160384049077075, −5.89840135772017185002172497898, −4.70452276948966902557912846616, −3.60228677617363761986581441852, −2.75327122845791427970053447273, −1.39648513513354279490734332798,
1.99478164153832457017927903455, 2.75028703069190537573406129864, 3.85425013509095682508339906848, 4.69951632223728736102174083352, 6.57348752635174227179517644059, 7.27339282853041956826070300138, 7.83459523416562121572754147898, 8.974525682918489055786000328204, 9.580270842061132014822750683554, 10.34154796304074901253268792288