L(s) = 1 | + (−0.0402 − 0.999i)2-s + (−0.996 + 0.0804i)4-s + (0.599 + 1.58i)5-s + (0.120 + 0.992i)8-s + (−0.845 + 0.534i)9-s + (1.55 − 0.662i)10-s + (−0.919 + 0.391i)13-s + (0.987 − 0.160i)16-s + (1.83 + 0.781i)17-s + (0.568 + 0.822i)18-s + (−0.724 − 1.52i)20-s + (−1.39 + 1.23i)25-s + (0.428 + 0.903i)26-s + (−0.0557 − 1.38i)29-s + (−0.200 − 0.979i)32-s + ⋯ |
L(s) = 1 | + (−0.0402 − 0.999i)2-s + (−0.996 + 0.0804i)4-s + (0.599 + 1.58i)5-s + (0.120 + 0.992i)8-s + (−0.845 + 0.534i)9-s + (1.55 − 0.662i)10-s + (−0.919 + 0.391i)13-s + (0.987 − 0.160i)16-s + (1.83 + 0.781i)17-s + (0.568 + 0.822i)18-s + (−0.724 − 1.52i)20-s + (−1.39 + 1.23i)25-s + (0.428 + 0.903i)26-s + (−0.0557 − 1.38i)29-s + (−0.200 − 0.979i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.184i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.184i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8410504150\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8410504150\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0402 + 0.999i)T \) |
| 13 | \( 1 + (0.919 - 0.391i)T \) |
good | 3 | \( 1 + (0.845 - 0.534i)T^{2} \) |
| 5 | \( 1 + (-0.599 - 1.58i)T + (-0.748 + 0.663i)T^{2} \) |
| 7 | \( 1 + (-0.692 - 0.721i)T^{2} \) |
| 11 | \( 1 + (-0.428 - 0.903i)T^{2} \) |
| 17 | \( 1 + (-1.83 - 0.781i)T + (0.692 + 0.721i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.0557 + 1.38i)T + (-0.996 + 0.0804i)T^{2} \) |
| 31 | \( 1 + (-0.120 - 0.992i)T^{2} \) |
| 37 | \( 1 + (-0.253 + 1.23i)T + (-0.919 - 0.391i)T^{2} \) |
| 41 | \( 1 + (0.0224 + 0.0773i)T + (-0.845 + 0.534i)T^{2} \) |
| 43 | \( 1 + (0.919 - 0.391i)T^{2} \) |
| 47 | \( 1 + (0.354 + 0.935i)T^{2} \) |
| 53 | \( 1 + (0.221 + 1.82i)T + (-0.970 + 0.239i)T^{2} \) |
| 59 | \( 1 + (-0.948 - 0.316i)T^{2} \) |
| 61 | \( 1 + (-0.444 - 0.334i)T + (0.278 + 0.960i)T^{2} \) |
| 67 | \( 1 + (-0.987 - 0.160i)T^{2} \) |
| 71 | \( 1 + (0.0402 + 0.999i)T^{2} \) |
| 73 | \( 1 + (0.885 - 0.464i)T + (0.568 - 0.822i)T^{2} \) |
| 79 | \( 1 + (0.354 + 0.935i)T^{2} \) |
| 83 | \( 1 + (-0.885 + 0.464i)T^{2} \) |
| 89 | \( 1 + (-0.354 - 0.614i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.946 - 1.15i)T + (-0.200 + 0.979i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65002508277248748599034874075, −10.08159066880676102089985176689, −9.435944129421183523177537086868, −8.136042210871369906163480965328, −7.40157706826179263978525449561, −6.06272582333164967952639350210, −5.34999099503181186154520166341, −3.84006138361731653205649285137, −2.84296013993943377131664973966, −2.09455500361683792344951529925,
1.03318018250164999106546499845, 3.20518469549545095306049647580, 4.71584558433736338664715881759, 5.34790526237039718606123495475, 5.95383845245559629117781028265, 7.26951894820061823402286542766, 8.143399495839892942374762922316, 8.901658652803614369095518583295, 9.529106987952403493660018103781, 10.21395302151614378511252602306