L(s) = 1 | + (0.278 − 0.960i)2-s + (−0.845 − 0.534i)4-s + (0.787 + 1.14i)5-s + (−0.748 + 0.663i)8-s + (0.692 + 0.721i)9-s + (1.31 − 0.438i)10-s + (0.948 − 0.316i)13-s + (0.428 + 0.903i)16-s + (−1.60 − 0.535i)17-s + (0.885 − 0.464i)18-s + (−0.0557 − 1.38i)20-s + (−0.326 + 0.859i)25-s + (−0.0402 − 0.999i)26-s + (0.444 − 1.53i)29-s + (0.987 − 0.160i)32-s + ⋯ |
L(s) = 1 | + (0.278 − 0.960i)2-s + (−0.845 − 0.534i)4-s + (0.787 + 1.14i)5-s + (−0.748 + 0.663i)8-s + (0.692 + 0.721i)9-s + (1.31 − 0.438i)10-s + (0.948 − 0.316i)13-s + (0.428 + 0.903i)16-s + (−1.60 − 0.535i)17-s + (0.885 − 0.464i)18-s + (−0.0557 − 1.38i)20-s + (−0.326 + 0.859i)25-s + (−0.0402 − 0.999i)26-s + (0.444 − 1.53i)29-s + (0.987 − 0.160i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.791 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.791 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.131893917\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.131893917\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.278 + 0.960i)T \) |
| 13 | \( 1 + (-0.948 + 0.316i)T \) |
good | 3 | \( 1 + (-0.692 - 0.721i)T^{2} \) |
| 5 | \( 1 + (-0.787 - 1.14i)T + (-0.354 + 0.935i)T^{2} \) |
| 7 | \( 1 + (-0.799 - 0.600i)T^{2} \) |
| 11 | \( 1 + (0.0402 + 0.999i)T^{2} \) |
| 17 | \( 1 + (1.60 + 0.535i)T + (0.799 + 0.600i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.444 + 1.53i)T + (-0.845 - 0.534i)T^{2} \) |
| 31 | \( 1 + (0.748 - 0.663i)T^{2} \) |
| 37 | \( 1 + (1.96 + 0.319i)T + (0.948 + 0.316i)T^{2} \) |
| 41 | \( 1 + (0.511 + 0.218i)T + (0.692 + 0.721i)T^{2} \) |
| 43 | \( 1 + (-0.948 + 0.316i)T^{2} \) |
| 47 | \( 1 + (-0.568 - 0.822i)T^{2} \) |
| 53 | \( 1 + (1.41 - 1.25i)T + (0.120 - 0.992i)T^{2} \) |
| 59 | \( 1 + (0.632 + 0.774i)T^{2} \) |
| 61 | \( 1 + (-0.368 + 1.80i)T + (-0.919 - 0.391i)T^{2} \) |
| 67 | \( 1 + (-0.428 + 0.903i)T^{2} \) |
| 71 | \( 1 + (-0.278 + 0.960i)T^{2} \) |
| 73 | \( 1 + (-0.970 - 0.239i)T + (0.885 + 0.464i)T^{2} \) |
| 79 | \( 1 + (-0.568 - 0.822i)T^{2} \) |
| 83 | \( 1 + (0.970 + 0.239i)T^{2} \) |
| 89 | \( 1 + (0.568 - 0.983i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.706 - 0.0570i)T + (0.987 + 0.160i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81424198440595743351464765054, −10.02297885568324859668991896713, −9.221867950438815913663602810488, −8.177114349274876189947845895842, −6.87614097220856170947645796043, −6.10892169319721718129374521281, −4.99307244503627617508301142934, −3.92857736953914023421947783444, −2.71088247536159905637376415221, −1.86856103531518868500180108293,
1.52652352497759982578068936445, 3.62087925516767649982291800530, 4.57076410016455899448725292634, 5.39023839894101881961288810475, 6.44613284086743785373513682215, 6.94918302849897440921555517787, 8.551351911019897743907546479925, 8.758361546807178607821238432891, 9.586713801610437649478421865097, 10.61351954924744515082518856116