L(s) = 1 | + (0.692 − 0.721i)2-s + (−0.0402 − 0.999i)4-s + (0.316 − 0.457i)5-s + (−0.748 − 0.663i)8-s + (0.278 + 0.960i)9-s + (−0.111 − 0.545i)10-s + (−0.200 − 0.979i)13-s + (−0.996 + 0.0804i)16-s + (0.0161 − 0.0789i)17-s + (0.885 + 0.464i)18-s + (−0.470 − 0.297i)20-s + (0.244 + 0.645i)25-s + (−0.845 − 0.534i)26-s + (−1.27 + 1.32i)29-s + (−0.632 + 0.774i)32-s + ⋯ |
L(s) = 1 | + (0.692 − 0.721i)2-s + (−0.0402 − 0.999i)4-s + (0.316 − 0.457i)5-s + (−0.748 − 0.663i)8-s + (0.278 + 0.960i)9-s + (−0.111 − 0.545i)10-s + (−0.200 − 0.979i)13-s + (−0.996 + 0.0804i)16-s + (0.0161 − 0.0789i)17-s + (0.885 + 0.464i)18-s + (−0.470 − 0.297i)20-s + (0.244 + 0.645i)25-s + (−0.845 − 0.534i)26-s + (−1.27 + 1.32i)29-s + (−0.632 + 0.774i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.132 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.132 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.344122613\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.344122613\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.692 + 0.721i)T \) |
| 13 | \( 1 + (0.200 + 0.979i)T \) |
good | 3 | \( 1 + (-0.278 - 0.960i)T^{2} \) |
| 5 | \( 1 + (-0.316 + 0.457i)T + (-0.354 - 0.935i)T^{2} \) |
| 7 | \( 1 + (0.919 + 0.391i)T^{2} \) |
| 11 | \( 1 + (0.845 + 0.534i)T^{2} \) |
| 17 | \( 1 + (-0.0161 + 0.0789i)T + (-0.919 - 0.391i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.27 - 1.32i)T + (-0.0402 - 0.999i)T^{2} \) |
| 31 | \( 1 + (0.748 + 0.663i)T^{2} \) |
| 37 | \( 1 + (0.542 + 0.664i)T + (-0.200 + 0.979i)T^{2} \) |
| 41 | \( 1 + (-1.10 - 0.832i)T + (0.278 + 0.960i)T^{2} \) |
| 43 | \( 1 + (0.200 + 0.979i)T^{2} \) |
| 47 | \( 1 + (-0.568 + 0.822i)T^{2} \) |
| 53 | \( 1 + (-0.299 - 0.265i)T + (0.120 + 0.992i)T^{2} \) |
| 59 | \( 1 + (-0.987 - 0.160i)T^{2} \) |
| 61 | \( 1 + (-1.51 - 0.506i)T + (0.799 + 0.600i)T^{2} \) |
| 67 | \( 1 + (0.996 + 0.0804i)T^{2} \) |
| 71 | \( 1 + (-0.692 + 0.721i)T^{2} \) |
| 73 | \( 1 + (-0.970 + 0.239i)T + (0.885 - 0.464i)T^{2} \) |
| 79 | \( 1 + (-0.568 + 0.822i)T^{2} \) |
| 83 | \( 1 + (0.970 - 0.239i)T^{2} \) |
| 89 | \( 1 + (0.568 - 0.983i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.304 - 0.640i)T + (-0.632 - 0.774i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71142409674171924120500085872, −9.822961754593031007359597160370, −9.050825410797154154780339932934, −7.905164687531826022481308989724, −6.87238880265330770131838199457, −5.46686959198033708824047982945, −5.18854899169540605095111830741, −3.94238613029829272087898040419, −2.74133377157108365266817907660, −1.52145358394408843262235377360,
2.30325776375068960906301405570, 3.61651755092903445131816218414, 4.42364729033299969006722317407, 5.67583233933788566735085428935, 6.50421011901631042146774806423, 7.07900652294644743889374241814, 8.136240579844616979407322856978, 9.164520913783472253519025985879, 9.835913901752934778615050118334, 11.12903250028556812405422461632