L(s) = 1 | + (0.799 + 0.600i)2-s + (0.278 + 0.960i)4-s + (−1.62 + 0.855i)5-s + (−0.354 + 0.935i)8-s + (−0.919 + 0.391i)9-s + (−1.81 − 0.295i)10-s + (0.987 + 0.160i)13-s + (−0.845 + 0.534i)16-s + (0.549 − 0.0892i)17-s + (−0.970 − 0.239i)18-s + (−1.27 − 1.32i)20-s + (1.35 − 1.96i)25-s + (0.692 + 0.721i)26-s + (1.51 + 1.13i)29-s + (−0.996 − 0.0804i)32-s + ⋯ |
L(s) = 1 | + (0.799 + 0.600i)2-s + (0.278 + 0.960i)4-s + (−1.62 + 0.855i)5-s + (−0.354 + 0.935i)8-s + (−0.919 + 0.391i)9-s + (−1.81 − 0.295i)10-s + (0.987 + 0.160i)13-s + (−0.845 + 0.534i)16-s + (0.549 − 0.0892i)17-s + (−0.970 − 0.239i)18-s + (−1.27 − 1.32i)20-s + (1.35 − 1.96i)25-s + (0.692 + 0.721i)26-s + (1.51 + 1.13i)29-s + (−0.996 − 0.0804i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 - 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 - 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.030966846\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.030966846\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.799 - 0.600i)T \) |
| 13 | \( 1 + (-0.987 - 0.160i)T \) |
good | 3 | \( 1 + (0.919 - 0.391i)T^{2} \) |
| 5 | \( 1 + (1.62 - 0.855i)T + (0.568 - 0.822i)T^{2} \) |
| 7 | \( 1 + (-0.948 + 0.316i)T^{2} \) |
| 11 | \( 1 + (-0.692 - 0.721i)T^{2} \) |
| 17 | \( 1 + (-0.549 + 0.0892i)T + (0.948 - 0.316i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.51 - 1.13i)T + (0.278 + 0.960i)T^{2} \) |
| 31 | \( 1 + (0.354 - 0.935i)T^{2} \) |
| 37 | \( 1 + (-0.0802 + 0.00648i)T + (0.987 - 0.160i)T^{2} \) |
| 41 | \( 1 + (0.319 + 1.56i)T + (-0.919 + 0.391i)T^{2} \) |
| 43 | \( 1 + (-0.987 - 0.160i)T^{2} \) |
| 47 | \( 1 + (-0.885 + 0.464i)T^{2} \) |
| 53 | \( 1 + (0.700 - 1.84i)T + (-0.748 - 0.663i)T^{2} \) |
| 59 | \( 1 + (-0.428 - 0.903i)T^{2} \) |
| 61 | \( 1 + (-0.253 + 0.309i)T + (-0.200 - 0.979i)T^{2} \) |
| 67 | \( 1 + (0.845 + 0.534i)T^{2} \) |
| 71 | \( 1 + (-0.799 - 0.600i)T^{2} \) |
| 73 | \( 1 + (0.120 + 0.992i)T + (-0.970 + 0.239i)T^{2} \) |
| 79 | \( 1 + (-0.885 + 0.464i)T^{2} \) |
| 83 | \( 1 + (-0.120 - 0.992i)T^{2} \) |
| 89 | \( 1 + (0.885 - 1.53i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.0457 + 1.13i)T + (-0.996 + 0.0804i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06211580401289579998807118626, −10.67324587770235558995438206874, −8.758859587331672202150334307999, −8.231033114602887516407831288433, −7.40403515374296025468821264350, −6.66331521106657690430492529302, −5.64968332564107123466972341969, −4.48482872051563442467399278504, −3.53804136343004117371272855499, −2.84486073662526223653665214946,
0.950572021859315465165074134956, 3.00595860172875139765553262075, 3.82247358949072966105623407241, 4.65720903195507977096335184956, 5.67537449772706237535023185281, 6.67420190445387652718753657308, 8.036392054857826057155091872100, 8.538599907836135298573857362825, 9.622940617471127929578656920185, 10.77414090595126364727355631079