L(s) = 1 | + (−0.200 − 0.979i)2-s + (−0.919 + 0.391i)4-s + (−1.84 + 0.453i)5-s + (0.568 + 0.822i)8-s + (0.948 + 0.316i)9-s + (0.813 + 1.71i)10-s + (0.428 + 0.903i)13-s + (0.692 − 0.721i)16-s + (−0.788 + 1.66i)17-s + (0.120 − 0.992i)18-s + (1.51 − 1.13i)20-s + (2.30 − 1.20i)25-s + (0.799 − 0.600i)26-s + (0.253 + 1.23i)29-s + (−0.845 − 0.534i)32-s + ⋯ |
L(s) = 1 | + (−0.200 − 0.979i)2-s + (−0.919 + 0.391i)4-s + (−1.84 + 0.453i)5-s + (0.568 + 0.822i)8-s + (0.948 + 0.316i)9-s + (0.813 + 1.71i)10-s + (0.428 + 0.903i)13-s + (0.692 − 0.721i)16-s + (−0.788 + 1.66i)17-s + (0.120 − 0.992i)18-s + (1.51 − 1.13i)20-s + (2.30 − 1.20i)25-s + (0.799 − 0.600i)26-s + (0.253 + 1.23i)29-s + (−0.845 − 0.534i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 - 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 - 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5218361060\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5218361060\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.200 + 0.979i)T \) |
| 13 | \( 1 + (-0.428 - 0.903i)T \) |
good | 3 | \( 1 + (-0.948 - 0.316i)T^{2} \) |
| 5 | \( 1 + (1.84 - 0.453i)T + (0.885 - 0.464i)T^{2} \) |
| 7 | \( 1 + (0.632 + 0.774i)T^{2} \) |
| 11 | \( 1 + (-0.799 + 0.600i)T^{2} \) |
| 17 | \( 1 + (0.788 - 1.66i)T + (-0.632 - 0.774i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.253 - 1.23i)T + (-0.919 + 0.391i)T^{2} \) |
| 31 | \( 1 + (-0.568 - 0.822i)T^{2} \) |
| 37 | \( 1 + (0.470 - 0.297i)T + (0.428 - 0.903i)T^{2} \) |
| 41 | \( 1 + (0.394 + 0.0641i)T + (0.948 + 0.316i)T^{2} \) |
| 43 | \( 1 + (-0.428 - 0.903i)T^{2} \) |
| 47 | \( 1 + (0.970 - 0.239i)T^{2} \) |
| 53 | \( 1 + (-0.487 - 0.705i)T + (-0.354 + 0.935i)T^{2} \) |
| 59 | \( 1 + (0.0402 - 0.999i)T^{2} \) |
| 61 | \( 1 + (1.96 + 0.158i)T + (0.987 + 0.160i)T^{2} \) |
| 67 | \( 1 + (-0.692 - 0.721i)T^{2} \) |
| 71 | \( 1 + (0.200 + 0.979i)T^{2} \) |
| 73 | \( 1 + (-0.748 - 0.663i)T + (0.120 + 0.992i)T^{2} \) |
| 79 | \( 1 + (0.970 - 0.239i)T^{2} \) |
| 83 | \( 1 + (0.748 + 0.663i)T^{2} \) |
| 89 | \( 1 + (-0.970 + 1.68i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.492 - 1.70i)T + (-0.845 + 0.534i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81525591722222219235854187010, −10.30595331693414840521113489010, −8.928154516152242809839321580723, −8.330828995143342027177133220877, −7.46522546090941968875112669320, −6.61089187864149214021876905786, −4.69963363758106114653406785360, −4.07410479092954112068428929806, −3.33261905374705925155469010198, −1.69391392487600350708610890527,
0.67943031994229321658770323688, 3.42687843627754676949628381782, 4.38351466985175787968352546227, 5.00875252314458896791239073439, 6.46101780496884349042030874794, 7.37685375099937595245136927428, 7.82305868251167876673663595684, 8.716622269081247041696251323241, 9.490775710820976121305239458975, 10.58365759183390262927293237254