Properties

Label 2-270-135.103-c2-0-19
Degree $2$
Conductor $270$
Sign $0.0452 + 0.998i$
Analytic cond. $7.35696$
Root an. cond. $2.71237$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.123 − 1.40i)2-s + (−2.99 + 0.103i)3-s + (−1.96 − 0.347i)4-s + (3.21 − 3.83i)5-s + (−0.223 + 4.23i)6-s + (7.14 + 5.00i)7-s + (−0.732 + 2.73i)8-s + (8.97 − 0.620i)9-s + (−5.00 − 4.99i)10-s + (−0.513 − 0.186i)11-s + (5.94 + 0.837i)12-s + (0.585 + 6.69i)13-s + (7.93 − 9.45i)14-s + (−9.22 + 11.8i)15-s + (3.75 + 1.36i)16-s + (−4.16 − 15.5i)17-s + ⋯
L(s)  = 1  + (0.0616 − 0.704i)2-s + (−0.999 + 0.0344i)3-s + (−0.492 − 0.0868i)4-s + (0.642 − 0.766i)5-s + (−0.0372 + 0.706i)6-s + (1.02 + 0.715i)7-s + (−0.0915 + 0.341i)8-s + (0.997 − 0.0689i)9-s + (−0.500 − 0.499i)10-s + (−0.0466 − 0.0169i)11-s + (0.495 + 0.0697i)12-s + (0.0450 + 0.515i)13-s + (0.566 − 0.675i)14-s + (−0.615 + 0.788i)15-s + (0.234 + 0.0855i)16-s + (−0.245 − 0.914i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0452 + 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0452 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $0.0452 + 0.998i$
Analytic conductor: \(7.35696\)
Root analytic conductor: \(2.71237\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1),\ 0.0452 + 0.998i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.01518 - 0.970202i\)
\(L(\frac12)\) \(\approx\) \(1.01518 - 0.970202i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.123 + 1.40i)T \)
3 \( 1 + (2.99 - 0.103i)T \)
5 \( 1 + (-3.21 + 3.83i)T \)
good7 \( 1 + (-7.14 - 5.00i)T + (16.7 + 46.0i)T^{2} \)
11 \( 1 + (0.513 + 0.186i)T + (92.6 + 77.7i)T^{2} \)
13 \( 1 + (-0.585 - 6.69i)T + (-166. + 29.3i)T^{2} \)
17 \( 1 + (4.16 + 15.5i)T + (-250. + 144.5i)T^{2} \)
19 \( 1 + (-16.6 + 9.60i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-28.2 + 19.7i)T + (180. - 497. i)T^{2} \)
29 \( 1 + (31.8 + 37.9i)T + (-146. + 828. i)T^{2} \)
31 \( 1 + (-1.03 + 5.89i)T + (-903. - 328. i)T^{2} \)
37 \( 1 + (0.836 + 3.12i)T + (-1.18e3 + 684.5i)T^{2} \)
41 \( 1 + (-2.89 - 2.43i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (-22.5 - 48.4i)T + (-1.18e3 + 1.41e3i)T^{2} \)
47 \( 1 + (-50.4 - 35.3i)T + (755. + 2.07e3i)T^{2} \)
53 \( 1 + (-54.4 - 54.4i)T + 2.80e3iT^{2} \)
59 \( 1 + (11.8 + 32.6i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (14.9 + 84.9i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (124. - 10.9i)T + (4.42e3 - 779. i)T^{2} \)
71 \( 1 + (-29.1 + 50.4i)T + (-2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (14.1 - 52.8i)T + (-4.61e3 - 2.66e3i)T^{2} \)
79 \( 1 + (-15.4 - 18.4i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (-86.8 - 7.59i)T + (6.78e3 + 1.19e3i)T^{2} \)
89 \( 1 + (-79.5 + 45.9i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (23.6 - 11.0i)T + (6.04e3 - 7.20e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.52026061514542328686625512794, −10.82834222922836696413653690600, −9.522801058577310776313704442427, −9.012212075096953288087745903571, −7.59241368348300733913217282821, −6.07912835558502715520031086725, −5.10381043030278892870219139709, −4.52090167167503493470172400783, −2.30404231811052871928384728777, −0.949667108732143733323325108110, 1.40864474362648659985355707682, 3.73473049826261458690350040752, 5.16430072019476749951644740500, 5.78766530846223749212321076846, 7.08603812159504954997187131167, 7.53768780913811998392900324114, 9.051897597997219927063695564732, 10.38707751404934198828302421743, 10.75207114068298669124773989876, 11.81132643920846809966696505201

Graph of the $Z$-function along the critical line