L(s) = 1 | + (0.123 − 1.40i)2-s + (−2.99 + 0.103i)3-s + (−1.96 − 0.347i)4-s + (3.21 − 3.83i)5-s + (−0.223 + 4.23i)6-s + (7.14 + 5.00i)7-s + (−0.732 + 2.73i)8-s + (8.97 − 0.620i)9-s + (−5.00 − 4.99i)10-s + (−0.513 − 0.186i)11-s + (5.94 + 0.837i)12-s + (0.585 + 6.69i)13-s + (7.93 − 9.45i)14-s + (−9.22 + 11.8i)15-s + (3.75 + 1.36i)16-s + (−4.16 − 15.5i)17-s + ⋯ |
L(s) = 1 | + (0.0616 − 0.704i)2-s + (−0.999 + 0.0344i)3-s + (−0.492 − 0.0868i)4-s + (0.642 − 0.766i)5-s + (−0.0372 + 0.706i)6-s + (1.02 + 0.715i)7-s + (−0.0915 + 0.341i)8-s + (0.997 − 0.0689i)9-s + (−0.500 − 0.499i)10-s + (−0.0466 − 0.0169i)11-s + (0.495 + 0.0697i)12-s + (0.0450 + 0.515i)13-s + (0.566 − 0.675i)14-s + (−0.615 + 0.788i)15-s + (0.234 + 0.0855i)16-s + (−0.245 − 0.914i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.0452+0.998i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(0.0452+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.0452+0.998i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), 0.0452+0.998i)
|
Particular Values
L(23) |
≈ |
1.01518−0.970202i |
L(21) |
≈ |
1.01518−0.970202i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.123+1.40i)T |
| 3 | 1+(2.99−0.103i)T |
| 5 | 1+(−3.21+3.83i)T |
good | 7 | 1+(−7.14−5.00i)T+(16.7+46.0i)T2 |
| 11 | 1+(0.513+0.186i)T+(92.6+77.7i)T2 |
| 13 | 1+(−0.585−6.69i)T+(−166.+29.3i)T2 |
| 17 | 1+(4.16+15.5i)T+(−250.+144.5i)T2 |
| 19 | 1+(−16.6+9.60i)T+(180.5−312.i)T2 |
| 23 | 1+(−28.2+19.7i)T+(180.−497.i)T2 |
| 29 | 1+(31.8+37.9i)T+(−146.+828.i)T2 |
| 31 | 1+(−1.03+5.89i)T+(−903.−328.i)T2 |
| 37 | 1+(0.836+3.12i)T+(−1.18e3+684.5i)T2 |
| 41 | 1+(−2.89−2.43i)T+(291.+1.65e3i)T2 |
| 43 | 1+(−22.5−48.4i)T+(−1.18e3+1.41e3i)T2 |
| 47 | 1+(−50.4−35.3i)T+(755.+2.07e3i)T2 |
| 53 | 1+(−54.4−54.4i)T+2.80e3iT2 |
| 59 | 1+(11.8+32.6i)T+(−2.66e3+2.23e3i)T2 |
| 61 | 1+(14.9+84.9i)T+(−3.49e3+1.27e3i)T2 |
| 67 | 1+(124.−10.9i)T+(4.42e3−779.i)T2 |
| 71 | 1+(−29.1+50.4i)T+(−2.52e3−4.36e3i)T2 |
| 73 | 1+(14.1−52.8i)T+(−4.61e3−2.66e3i)T2 |
| 79 | 1+(−15.4−18.4i)T+(−1.08e3+6.14e3i)T2 |
| 83 | 1+(−86.8−7.59i)T+(6.78e3+1.19e3i)T2 |
| 89 | 1+(−79.5+45.9i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(23.6−11.0i)T+(6.04e3−7.20e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.52026061514542328686625512794, −10.82834222922836696413653690600, −9.522801058577310776313704442427, −9.012212075096953288087745903571, −7.59241368348300733913217282821, −6.07912835558502715520031086725, −5.10381043030278892870219139709, −4.52090167167503493470172400783, −2.30404231811052871928384728777, −0.949667108732143733323325108110,
1.40864474362648659985355707682, 3.73473049826261458690350040752, 5.16430072019476749951644740500, 5.78766530846223749212321076846, 7.08603812159504954997187131167, 7.53768780913811998392900324114, 9.051897597997219927063695564732, 10.38707751404934198828302421743, 10.75207114068298669124773989876, 11.81132643920846809966696505201