L(s) = 1 | + (0.123 − 1.40i)2-s + (1.03 − 2.81i)3-s + (−1.96 − 0.347i)4-s + (3.02 + 3.97i)5-s + (−3.84 − 1.80i)6-s + (−1.93 − 1.35i)7-s + (−0.732 + 2.73i)8-s + (−6.86 − 5.82i)9-s + (5.97 − 3.77i)10-s + (−15.0 − 5.47i)11-s + (−3.01 + 5.18i)12-s + (−2.05 − 23.5i)13-s + (−2.14 + 2.56i)14-s + (14.3 − 4.41i)15-s + (3.75 + 1.36i)16-s + (−4.64 − 17.3i)17-s + ⋯ |
L(s) = 1 | + (0.0616 − 0.704i)2-s + (0.344 − 0.938i)3-s + (−0.492 − 0.0868i)4-s + (0.605 + 0.795i)5-s + (−0.640 − 0.300i)6-s + (−0.276 − 0.193i)7-s + (−0.0915 + 0.341i)8-s + (−0.762 − 0.646i)9-s + (0.597 − 0.377i)10-s + (−1.36 − 0.497i)11-s + (−0.251 + 0.432i)12-s + (−0.158 − 1.81i)13-s + (−0.153 + 0.182i)14-s + (0.955 − 0.294i)15-s + (0.234 + 0.0855i)16-s + (−0.273 − 1.02i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.972+0.232i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(−0.972+0.232i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.972+0.232i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), −0.972+0.232i)
|
Particular Values
L(23) |
≈ |
0.160641−1.36584i |
L(21) |
≈ |
0.160641−1.36584i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.123+1.40i)T |
| 3 | 1+(−1.03+2.81i)T |
| 5 | 1+(−3.02−3.97i)T |
good | 7 | 1+(1.93+1.35i)T+(16.7+46.0i)T2 |
| 11 | 1+(15.0+5.47i)T+(92.6+77.7i)T2 |
| 13 | 1+(2.05+23.5i)T+(−166.+29.3i)T2 |
| 17 | 1+(4.64+17.3i)T+(−250.+144.5i)T2 |
| 19 | 1+(7.52−4.34i)T+(180.5−312.i)T2 |
| 23 | 1+(−30.4+21.3i)T+(180.−497.i)T2 |
| 29 | 1+(−13.3−15.8i)T+(−146.+828.i)T2 |
| 31 | 1+(−3.91+22.1i)T+(−903.−328.i)T2 |
| 37 | 1+(−6.00−22.4i)T+(−1.18e3+684.5i)T2 |
| 41 | 1+(−54.5−45.8i)T+(291.+1.65e3i)T2 |
| 43 | 1+(−6.76−14.5i)T+(−1.18e3+1.41e3i)T2 |
| 47 | 1+(−16.8−11.8i)T+(755.+2.07e3i)T2 |
| 53 | 1+(−61.1−61.1i)T+2.80e3iT2 |
| 59 | 1+(28.7+79.0i)T+(−2.66e3+2.23e3i)T2 |
| 61 | 1+(−3.63−20.6i)T+(−3.49e3+1.27e3i)T2 |
| 67 | 1+(63.4−5.55i)T+(4.42e3−779.i)T2 |
| 71 | 1+(−57.9+100.i)T+(−2.52e3−4.36e3i)T2 |
| 73 | 1+(1.68−6.29i)T+(−4.61e3−2.66e3i)T2 |
| 79 | 1+(−14.2−16.9i)T+(−1.08e3+6.14e3i)T2 |
| 83 | 1+(−74.9−6.56i)T+(6.78e3+1.19e3i)T2 |
| 89 | 1+(71.6−41.3i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(37.6−17.5i)T+(6.04e3−7.20e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.05606997422114418366178832419, −10.55237656156467445198880422316, −9.509795683131118300250699399506, −8.271381915619625797867139973442, −7.43438089299715238669682356888, −6.22673076555077289003565271205, −5.19717374648605339016053113119, −2.95446759842965716625680087850, −2.70240039571981072725535893730, −0.63519943790036431641456457416,
2.30345714369969988285798367040, 4.14033607127463246703566757501, 4.97048544504647038141942518244, 5.91143378846175976358995261047, 7.26999879085834554772086302685, 8.578725459580306296363922783094, 9.125010328174957886443411146310, 9.955707039959643264667313514690, 10.95202366659797408655883604761, 12.36764158764278479144167876592