L(s) = 1 | + (−0.123 + 1.40i)2-s + (0.0747 + 2.99i)3-s + (−1.96 − 0.347i)4-s + (−1.43 + 4.78i)5-s + (−4.23 − 0.264i)6-s + (5.12 + 3.58i)7-s + (0.732 − 2.73i)8-s + (−8.98 + 0.448i)9-s + (−6.57 − 2.61i)10-s + (1.10 + 0.400i)11-s + (0.894 − 5.93i)12-s + (1.98 + 22.7i)13-s + (−5.68 + 6.77i)14-s + (−14.4 − 3.94i)15-s + (3.75 + 1.36i)16-s + (−7.82 − 29.2i)17-s + ⋯ |
L(s) = 1 | + (−0.0616 + 0.704i)2-s + (0.0249 + 0.999i)3-s + (−0.492 − 0.0868i)4-s + (−0.286 + 0.957i)5-s + (−0.705 − 0.0440i)6-s + (0.732 + 0.512i)7-s + (0.0915 − 0.341i)8-s + (−0.998 + 0.0498i)9-s + (−0.657 − 0.261i)10-s + (0.100 + 0.0364i)11-s + (0.0745 − 0.494i)12-s + (0.152 + 1.74i)13-s + (−0.406 + 0.484i)14-s + (−0.964 − 0.263i)15-s + (0.234 + 0.0855i)16-s + (−0.460 − 1.71i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.911+0.410i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(−0.911+0.410i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.911+0.410i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), −0.911+0.410i)
|
Particular Values
L(23) |
≈ |
0.250352−1.16670i |
L(21) |
≈ |
0.250352−1.16670i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.123−1.40i)T |
| 3 | 1+(−0.0747−2.99i)T |
| 5 | 1+(1.43−4.78i)T |
good | 7 | 1+(−5.12−3.58i)T+(16.7+46.0i)T2 |
| 11 | 1+(−1.10−0.400i)T+(92.6+77.7i)T2 |
| 13 | 1+(−1.98−22.7i)T+(−166.+29.3i)T2 |
| 17 | 1+(7.82+29.2i)T+(−250.+144.5i)T2 |
| 19 | 1+(10.4−6.04i)T+(180.5−312.i)T2 |
| 23 | 1+(−23.0+16.1i)T+(180.−497.i)T2 |
| 29 | 1+(−2.86−3.41i)T+(−146.+828.i)T2 |
| 31 | 1+(0.0505−0.286i)T+(−903.−328.i)T2 |
| 37 | 1+(−7.76−28.9i)T+(−1.18e3+684.5i)T2 |
| 41 | 1+(−1.89−1.59i)T+(291.+1.65e3i)T2 |
| 43 | 1+(−7.84−16.8i)T+(−1.18e3+1.41e3i)T2 |
| 47 | 1+(18.2+12.8i)T+(755.+2.07e3i)T2 |
| 53 | 1+(−23.0−23.0i)T+2.80e3iT2 |
| 59 | 1+(−3.86−10.6i)T+(−2.66e3+2.23e3i)T2 |
| 61 | 1+(−16.9−95.8i)T+(−3.49e3+1.27e3i)T2 |
| 67 | 1+(34.3−3.00i)T+(4.42e3−779.i)T2 |
| 71 | 1+(61.7−106.i)T+(−2.52e3−4.36e3i)T2 |
| 73 | 1+(5.98−22.3i)T+(−4.61e3−2.66e3i)T2 |
| 79 | 1+(−83.6−99.7i)T+(−1.08e3+6.14e3i)T2 |
| 83 | 1+(82.2+7.19i)T+(6.78e3+1.19e3i)T2 |
| 89 | 1+(−127.+73.4i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−129.+60.5i)T+(6.04e3−7.20e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.72084312816644931812243204822, −11.39600302477591259781723264692, −10.26463098537988787329956642499, −9.198364647120445750243615480775, −8.568333836374881332343213344348, −7.22340837585173517346979376940, −6.35403893622229856923221246786, −4.98204580861885280308882538676, −4.17467262365150285532928609736, −2.61385307467046467842375584861,
0.63580576899667318868658721070, 1.77811708925330248449176507792, 3.50650325352715344277742997286, 4.87958794195230152958175679175, 5.98467216150745149617728577248, 7.62331250515850925594731336785, 8.218458385991456670579651196039, 9.014983330415650678851601392350, 10.57634480134736290629164902883, 11.16951940951390502900120512292