Properties

Label 2-270-135.104-c2-0-11
Degree $2$
Conductor $270$
Sign $-0.588 - 0.808i$
Analytic cond. $7.35696$
Root an. cond. $2.71237$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.32 + 0.483i)2-s + (−1.34 + 2.68i)3-s + (1.53 + 1.28i)4-s + (2.69 + 4.21i)5-s + (−3.08 + 2.91i)6-s + (2.97 + 3.54i)7-s + (1.41 + 2.44i)8-s + (−5.38 − 7.21i)9-s + (1.54 + 6.90i)10-s + (1.05 − 0.186i)11-s + (−5.50 + 2.38i)12-s + (1.47 + 4.06i)13-s + (2.23 + 6.14i)14-s + (−14.9 + 1.55i)15-s + (0.694 + 3.93i)16-s + (−1.77 + 3.07i)17-s + ⋯
L(s)  = 1  + (0.664 + 0.241i)2-s + (−0.448 + 0.893i)3-s + (0.383 + 0.321i)4-s + (0.538 + 0.842i)5-s + (−0.513 + 0.485i)6-s + (0.424 + 0.505i)7-s + (0.176 + 0.306i)8-s + (−0.598 − 0.801i)9-s + (0.154 + 0.690i)10-s + (0.0959 − 0.0169i)11-s + (−0.458 + 0.198i)12-s + (0.113 + 0.312i)13-s + (0.159 + 0.438i)14-s + (−0.994 + 0.103i)15-s + (0.0434 + 0.246i)16-s + (−0.104 + 0.180i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.588 - 0.808i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.588 - 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $-0.588 - 0.808i$
Analytic conductor: \(7.35696\)
Root analytic conductor: \(2.71237\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (239, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1),\ -0.588 - 0.808i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.979890 + 1.92554i\)
\(L(\frac12)\) \(\approx\) \(0.979890 + 1.92554i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.32 - 0.483i)T \)
3 \( 1 + (1.34 - 2.68i)T \)
5 \( 1 + (-2.69 - 4.21i)T \)
good7 \( 1 + (-2.97 - 3.54i)T + (-8.50 + 48.2i)T^{2} \)
11 \( 1 + (-1.05 + 0.186i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (-1.47 - 4.06i)T + (-129. + 108. i)T^{2} \)
17 \( 1 + (1.77 - 3.07i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (1.99 + 3.45i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (19.8 + 16.6i)T + (91.8 + 520. i)T^{2} \)
29 \( 1 + (2.24 - 6.16i)T + (-644. - 540. i)T^{2} \)
31 \( 1 + (11.5 + 9.67i)T + (166. + 946. i)T^{2} \)
37 \( 1 + (-63.7 - 36.7i)T + (684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-6.76 - 18.5i)T + (-1.28e3 + 1.08e3i)T^{2} \)
43 \( 1 + (4.11 - 0.725i)T + (1.73e3 - 632. i)T^{2} \)
47 \( 1 + (-18.0 + 15.1i)T + (383. - 2.17e3i)T^{2} \)
53 \( 1 + 20.2T + 2.80e3T^{2} \)
59 \( 1 + (-55.8 - 9.85i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (-76.1 + 63.8i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (6.06 + 16.6i)T + (-3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (26.1 + 15.1i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-83.2 + 48.0i)T + (2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-132. - 48.2i)T + (4.78e3 + 4.01e3i)T^{2} \)
83 \( 1 + (107. + 39.2i)T + (5.27e3 + 4.42e3i)T^{2} \)
89 \( 1 + (-42.0 + 24.2i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-61.5 + 10.8i)T + (8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.79931340804102052780068655306, −11.20550186703949631714089296120, −10.28562189069756854788063286373, −9.347566196976437441261057966538, −8.142001838941328935828478529504, −6.64478036429519282603456595060, −5.95381267358404229980739075933, −4.90992355159999401567312311172, −3.75145821602763427736072719045, −2.39603007216253393251957406268, 0.983991680417967870014835976354, 2.22593775174422230376861169296, 4.15662836306999486406616024900, 5.34713598711390483596358511173, 6.06995579909803390200240686407, 7.33301950917654847076470163620, 8.255933274539144969999214653309, 9.582321824390457579840084059733, 10.72560483282889038216265787111, 11.57809716850877707967993943368

Graph of the $Z$-function along the critical line