L(s) = 1 | + (1.32 + 0.483i)2-s + (−1.34 + 2.68i)3-s + (1.53 + 1.28i)4-s + (2.69 + 4.21i)5-s + (−3.08 + 2.91i)6-s + (2.97 + 3.54i)7-s + (1.41 + 2.44i)8-s + (−5.38 − 7.21i)9-s + (1.54 + 6.90i)10-s + (1.05 − 0.186i)11-s + (−5.50 + 2.38i)12-s + (1.47 + 4.06i)13-s + (2.23 + 6.14i)14-s + (−14.9 + 1.55i)15-s + (0.694 + 3.93i)16-s + (−1.77 + 3.07i)17-s + ⋯ |
L(s) = 1 | + (0.664 + 0.241i)2-s + (−0.448 + 0.893i)3-s + (0.383 + 0.321i)4-s + (0.538 + 0.842i)5-s + (−0.513 + 0.485i)6-s + (0.424 + 0.505i)7-s + (0.176 + 0.306i)8-s + (−0.598 − 0.801i)9-s + (0.154 + 0.690i)10-s + (0.0959 − 0.0169i)11-s + (−0.458 + 0.198i)12-s + (0.113 + 0.312i)13-s + (0.159 + 0.438i)14-s + (−0.994 + 0.103i)15-s + (0.0434 + 0.246i)16-s + (−0.104 + 0.180i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.588−0.808i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(−0.588−0.808i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.588−0.808i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), −0.588−0.808i)
|
Particular Values
L(23) |
≈ |
0.979890+1.92554i |
L(21) |
≈ |
0.979890+1.92554i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.32−0.483i)T |
| 3 | 1+(1.34−2.68i)T |
| 5 | 1+(−2.69−4.21i)T |
good | 7 | 1+(−2.97−3.54i)T+(−8.50+48.2i)T2 |
| 11 | 1+(−1.05+0.186i)T+(113.−41.3i)T2 |
| 13 | 1+(−1.47−4.06i)T+(−129.+108.i)T2 |
| 17 | 1+(1.77−3.07i)T+(−144.5−250.i)T2 |
| 19 | 1+(1.99+3.45i)T+(−180.5+312.i)T2 |
| 23 | 1+(19.8+16.6i)T+(91.8+520.i)T2 |
| 29 | 1+(2.24−6.16i)T+(−644.−540.i)T2 |
| 31 | 1+(11.5+9.67i)T+(166.+946.i)T2 |
| 37 | 1+(−63.7−36.7i)T+(684.5+1.18e3i)T2 |
| 41 | 1+(−6.76−18.5i)T+(−1.28e3+1.08e3i)T2 |
| 43 | 1+(4.11−0.725i)T+(1.73e3−632.i)T2 |
| 47 | 1+(−18.0+15.1i)T+(383.−2.17e3i)T2 |
| 53 | 1+20.2T+2.80e3T2 |
| 59 | 1+(−55.8−9.85i)T+(3.27e3+1.19e3i)T2 |
| 61 | 1+(−76.1+63.8i)T+(646.−3.66e3i)T2 |
| 67 | 1+(6.06+16.6i)T+(−3.43e3+2.88e3i)T2 |
| 71 | 1+(26.1+15.1i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(−83.2+48.0i)T+(2.66e3−4.61e3i)T2 |
| 79 | 1+(−132.−48.2i)T+(4.78e3+4.01e3i)T2 |
| 83 | 1+(107.+39.2i)T+(5.27e3+4.42e3i)T2 |
| 89 | 1+(−42.0+24.2i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−61.5+10.8i)T+(8.84e3−3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.79931340804102052780068655306, −11.20550186703949631714089296120, −10.28562189069756854788063286373, −9.347566196976437441261057966538, −8.142001838941328935828478529504, −6.64478036429519282603456595060, −5.95381267358404229980739075933, −4.90992355159999401567312311172, −3.75145821602763427736072719045, −2.39603007216253393251957406268,
0.983991680417967870014835976354, 2.22593775174422230376861169296, 4.15662836306999486406616024900, 5.34713598711390483596358511173, 6.06995579909803390200240686407, 7.33301950917654847076470163620, 8.255933274539144969999214653309, 9.582321824390457579840084059733, 10.72560483282889038216265787111, 11.57809716850877707967993943368