L(s) = 1 | + (−1.32 − 0.483i)2-s + (−1.15 + 2.76i)3-s + (1.53 + 1.28i)4-s + (4.75 − 1.55i)5-s + (2.87 − 3.12i)6-s + (3.89 + 4.64i)7-s + (−1.41 − 2.44i)8-s + (−6.34 − 6.38i)9-s + (−7.06 − 0.234i)10-s + (19.9 − 3.51i)11-s + (−5.32 + 2.76i)12-s + (−4.33 − 11.8i)13-s + (−2.93 − 8.05i)14-s + (−1.17 + 14.9i)15-s + (0.694 + 3.93i)16-s + (−5.27 + 9.13i)17-s + ⋯ |
L(s) = 1 | + (−0.664 − 0.241i)2-s + (−0.384 + 0.923i)3-s + (0.383 + 0.321i)4-s + (0.950 − 0.310i)5-s + (0.478 − 0.520i)6-s + (0.556 + 0.663i)7-s + (−0.176 − 0.306i)8-s + (−0.704 − 0.709i)9-s + (−0.706 − 0.0234i)10-s + (1.81 − 0.319i)11-s + (−0.443 + 0.230i)12-s + (−0.333 − 0.915i)13-s + (−0.209 − 0.575i)14-s + (−0.0782 + 0.996i)15-s + (0.0434 + 0.246i)16-s + (−0.310 + 0.537i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.832−0.554i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(0.832−0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.832−0.554i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), 0.832−0.554i)
|
Particular Values
L(23) |
≈ |
1.30209+0.393943i |
L(21) |
≈ |
1.30209+0.393943i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.32+0.483i)T |
| 3 | 1+(1.15−2.76i)T |
| 5 | 1+(−4.75+1.55i)T |
good | 7 | 1+(−3.89−4.64i)T+(−8.50+48.2i)T2 |
| 11 | 1+(−19.9+3.51i)T+(113.−41.3i)T2 |
| 13 | 1+(4.33+11.8i)T+(−129.+108.i)T2 |
| 17 | 1+(5.27−9.13i)T+(−144.5−250.i)T2 |
| 19 | 1+(5.65+9.80i)T+(−180.5+312.i)T2 |
| 23 | 1+(−21.2−17.8i)T+(91.8+520.i)T2 |
| 29 | 1+(7.25−19.9i)T+(−644.−540.i)T2 |
| 31 | 1+(−14.4−12.1i)T+(166.+946.i)T2 |
| 37 | 1+(−41.9−24.1i)T+(684.5+1.18e3i)T2 |
| 41 | 1+(−18.3−50.3i)T+(−1.28e3+1.08e3i)T2 |
| 43 | 1+(60.0−10.5i)T+(1.73e3−632.i)T2 |
| 47 | 1+(−31.7+26.6i)T+(383.−2.17e3i)T2 |
| 53 | 1−46.1T+2.80e3T2 |
| 59 | 1+(68.5+12.0i)T+(3.27e3+1.19e3i)T2 |
| 61 | 1+(77.0−64.6i)T+(646.−3.66e3i)T2 |
| 67 | 1+(30.8+84.7i)T+(−3.43e3+2.88e3i)T2 |
| 71 | 1+(−42.4−24.4i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(−0.265+0.153i)T+(2.66e3−4.61e3i)T2 |
| 79 | 1+(82.8+30.1i)T+(4.78e3+4.01e3i)T2 |
| 83 | 1+(−55.7−20.2i)T+(5.27e3+4.42e3i)T2 |
| 89 | 1+(34.8−20.1i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(78.3−13.8i)T+(8.84e3−3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54767665511213326631105193858, −10.78819798597915420217689367217, −9.749725026494129678308114400122, −9.089115130239797615239469420771, −8.445890976803012648003837445298, −6.63937480033453568111070538510, −5.73075143800885768191170118302, −4.61644273334610601265794432292, −3.05259876933408553002953569192, −1.31481530421987190591691176752,
1.15423993221391811784859033070, 2.20875045967289936975745636652, 4.49008940010538929011411191203, 6.02528781199774244031797844400, 6.76022189170106897236504412954, 7.42071161090931444074724934331, 8.808676474678541599679706569102, 9.559377771185604328765676205359, 10.75122669213724499580413880069, 11.48910357867911190912215653157