L(s) = 1 | + (−1.32 − 0.483i)2-s + (−1.82 + 2.38i)3-s + (1.53 + 1.28i)4-s + (3.82 + 3.22i)5-s + (3.57 − 2.28i)6-s + (−7.39 − 8.81i)7-s + (−1.41 − 2.44i)8-s + (−2.36 − 8.68i)9-s + (−3.51 − 6.13i)10-s + (−7.46 + 1.31i)11-s + (−5.85 + 1.31i)12-s + (3.17 + 8.73i)13-s + (5.56 + 15.2i)14-s + (−14.6 + 3.24i)15-s + (0.694 + 3.93i)16-s + (15.9 − 27.5i)17-s + ⋯ |
L(s) = 1 | + (−0.664 − 0.241i)2-s + (−0.607 + 0.794i)3-s + (0.383 + 0.321i)4-s + (0.764 + 0.644i)5-s + (0.595 − 0.381i)6-s + (−1.05 − 1.25i)7-s + (−0.176 − 0.306i)8-s + (−0.262 − 0.964i)9-s + (−0.351 − 0.613i)10-s + (−0.678 + 0.119i)11-s + (−0.487 + 0.109i)12-s + (0.244 + 0.671i)13-s + (0.397 + 1.09i)14-s + (−0.976 + 0.216i)15-s + (0.0434 + 0.246i)16-s + (0.936 − 1.62i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.359+0.933i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(0.359+0.933i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.359+0.933i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), 0.359+0.933i)
|
Particular Values
L(23) |
≈ |
0.552874−0.379587i |
L(21) |
≈ |
0.552874−0.379587i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.32+0.483i)T |
| 3 | 1+(1.82−2.38i)T |
| 5 | 1+(−3.82−3.22i)T |
good | 7 | 1+(7.39+8.81i)T+(−8.50+48.2i)T2 |
| 11 | 1+(7.46−1.31i)T+(113.−41.3i)T2 |
| 13 | 1+(−3.17−8.73i)T+(−129.+108.i)T2 |
| 17 | 1+(−15.9+27.5i)T+(−144.5−250.i)T2 |
| 19 | 1+(3.87+6.71i)T+(−180.5+312.i)T2 |
| 23 | 1+(−4.47−3.75i)T+(91.8+520.i)T2 |
| 29 | 1+(−18.6+51.2i)T+(−644.−540.i)T2 |
| 31 | 1+(9.04+7.59i)T+(166.+946.i)T2 |
| 37 | 1+(39.4+22.7i)T+(684.5+1.18e3i)T2 |
| 41 | 1+(8.85+24.3i)T+(−1.28e3+1.08e3i)T2 |
| 43 | 1+(−22.9+4.04i)T+(1.73e3−632.i)T2 |
| 47 | 1+(−28.0+23.5i)T+(383.−2.17e3i)T2 |
| 53 | 1−99.3T+2.80e3T2 |
| 59 | 1+(26.8+4.73i)T+(3.27e3+1.19e3i)T2 |
| 61 | 1+(−14.8+12.4i)T+(646.−3.66e3i)T2 |
| 67 | 1+(24.4+67.0i)T+(−3.43e3+2.88e3i)T2 |
| 71 | 1+(−13.2−7.64i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(−6.00+3.46i)T+(2.66e3−4.61e3i)T2 |
| 79 | 1+(1.96+0.713i)T+(4.78e3+4.01e3i)T2 |
| 83 | 1+(125.+45.5i)T+(5.27e3+4.42e3i)T2 |
| 89 | 1+(102.−59.3i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−13.0+2.30i)T+(8.84e3−3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15963658572418058992660762164, −10.33820371045528391573771514497, −9.873577117812572521381489240454, −9.157196514298198897179101224999, −7.34821640770944217130220507584, −6.69591836557559726555424941958, −5.52019028419870771843564190789, −3.96936042306767654603412446965, −2.79754811137901894770547160872, −0.47566575737690385662359758992,
1.38945355623214838107919203157, 2.80715748575277113994644135128, 5.47498703609362232669796849213, 5.78135888021477518127352198501, 6.79387411127624395606669076475, 8.252491774833794656763563710073, 8.757679259542057770799352098821, 10.07684122758919547426353002973, 10.64574941711199226159100185263, 12.28152523219411836104548742603