Properties

Label 2-270-135.104-c2-0-16
Degree $2$
Conductor $270$
Sign $0.359 + 0.933i$
Analytic cond. $7.35696$
Root an. cond. $2.71237$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.32 − 0.483i)2-s + (−1.82 + 2.38i)3-s + (1.53 + 1.28i)4-s + (3.82 + 3.22i)5-s + (3.57 − 2.28i)6-s + (−7.39 − 8.81i)7-s + (−1.41 − 2.44i)8-s + (−2.36 − 8.68i)9-s + (−3.51 − 6.13i)10-s + (−7.46 + 1.31i)11-s + (−5.85 + 1.31i)12-s + (3.17 + 8.73i)13-s + (5.56 + 15.2i)14-s + (−14.6 + 3.24i)15-s + (0.694 + 3.93i)16-s + (15.9 − 27.5i)17-s + ⋯
L(s)  = 1  + (−0.664 − 0.241i)2-s + (−0.607 + 0.794i)3-s + (0.383 + 0.321i)4-s + (0.764 + 0.644i)5-s + (0.595 − 0.381i)6-s + (−1.05 − 1.25i)7-s + (−0.176 − 0.306i)8-s + (−0.262 − 0.964i)9-s + (−0.351 − 0.613i)10-s + (−0.678 + 0.119i)11-s + (−0.487 + 0.109i)12-s + (0.244 + 0.671i)13-s + (0.397 + 1.09i)14-s + (−0.976 + 0.216i)15-s + (0.0434 + 0.246i)16-s + (0.936 − 1.62i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.359 + 0.933i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.359 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $0.359 + 0.933i$
Analytic conductor: \(7.35696\)
Root analytic conductor: \(2.71237\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (239, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1),\ 0.359 + 0.933i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.552874 - 0.379587i\)
\(L(\frac12)\) \(\approx\) \(0.552874 - 0.379587i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.32 + 0.483i)T \)
3 \( 1 + (1.82 - 2.38i)T \)
5 \( 1 + (-3.82 - 3.22i)T \)
good7 \( 1 + (7.39 + 8.81i)T + (-8.50 + 48.2i)T^{2} \)
11 \( 1 + (7.46 - 1.31i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (-3.17 - 8.73i)T + (-129. + 108. i)T^{2} \)
17 \( 1 + (-15.9 + 27.5i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (3.87 + 6.71i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (-4.47 - 3.75i)T + (91.8 + 520. i)T^{2} \)
29 \( 1 + (-18.6 + 51.2i)T + (-644. - 540. i)T^{2} \)
31 \( 1 + (9.04 + 7.59i)T + (166. + 946. i)T^{2} \)
37 \( 1 + (39.4 + 22.7i)T + (684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (8.85 + 24.3i)T + (-1.28e3 + 1.08e3i)T^{2} \)
43 \( 1 + (-22.9 + 4.04i)T + (1.73e3 - 632. i)T^{2} \)
47 \( 1 + (-28.0 + 23.5i)T + (383. - 2.17e3i)T^{2} \)
53 \( 1 - 99.3T + 2.80e3T^{2} \)
59 \( 1 + (26.8 + 4.73i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (-14.8 + 12.4i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (24.4 + 67.0i)T + (-3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (-13.2 - 7.64i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-6.00 + 3.46i)T + (2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (1.96 + 0.713i)T + (4.78e3 + 4.01e3i)T^{2} \)
83 \( 1 + (125. + 45.5i)T + (5.27e3 + 4.42e3i)T^{2} \)
89 \( 1 + (102. - 59.3i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-13.0 + 2.30i)T + (8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15963658572418058992660762164, −10.33820371045528391573771514497, −9.873577117812572521381489240454, −9.157196514298198897179101224999, −7.34821640770944217130220507584, −6.69591836557559726555424941958, −5.52019028419870771843564190789, −3.96936042306767654603412446965, −2.79754811137901894770547160872, −0.47566575737690385662359758992, 1.38945355623214838107919203157, 2.80715748575277113994644135128, 5.47498703609362232669796849213, 5.78135888021477518127352198501, 6.79387411127624395606669076475, 8.252491774833794656763563710073, 8.757679259542057770799352098821, 10.07684122758919547426353002973, 10.64574941711199226159100185263, 12.28152523219411836104548742603

Graph of the $Z$-function along the critical line