L(s) = 1 | + (−0.996 − 0.0871i)2-s + (0.459 + 1.67i)3-s + (0.984 + 0.173i)4-s + (−2.23 − 0.107i)5-s + (−0.312 − 1.70i)6-s + (−1.02 − 0.721i)7-s + (−0.965 − 0.258i)8-s + (−2.57 + 1.53i)9-s + (2.21 + 0.302i)10-s + (−2.11 + 5.81i)11-s + (0.162 + 1.72i)12-s + (−0.354 − 4.04i)13-s + (0.963 + 0.808i)14-s + (−0.846 − 3.77i)15-s + (0.939 + 0.342i)16-s + (−1.07 + 0.287i)17-s + ⋯ |
L(s) = 1 | + (−0.704 − 0.0616i)2-s + (0.265 + 0.964i)3-s + (0.492 + 0.0868i)4-s + (−0.998 − 0.0482i)5-s + (−0.127 − 0.695i)6-s + (−0.389 − 0.272i)7-s + (−0.341 − 0.0915i)8-s + (−0.859 + 0.511i)9-s + (0.700 + 0.0955i)10-s + (−0.637 + 1.75i)11-s + (0.0469 + 0.497i)12-s + (−0.0982 − 1.12i)13-s + (0.257 + 0.216i)14-s + (−0.218 − 0.975i)15-s + (0.234 + 0.0855i)16-s + (−0.260 + 0.0698i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.984−0.173i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(−0.984−0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.984−0.173i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), −0.984−0.173i)
|
Particular Values
L(1) |
≈ |
0.0309546+0.353833i |
L(21) |
≈ |
0.0309546+0.353833i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.996+0.0871i)T |
| 3 | 1+(−0.459−1.67i)T |
| 5 | 1+(2.23+0.107i)T |
good | 7 | 1+(1.02+0.721i)T+(2.39+6.57i)T2 |
| 11 | 1+(2.11−5.81i)T+(−8.42−7.07i)T2 |
| 13 | 1+(0.354+4.04i)T+(−12.8+2.25i)T2 |
| 17 | 1+(1.07−0.287i)T+(14.7−8.5i)T2 |
| 19 | 1+(4.49−2.59i)T+(9.5−16.4i)T2 |
| 23 | 1+(2.75+3.93i)T+(−7.86+21.6i)T2 |
| 29 | 1+(−0.572+0.480i)T+(5.03−28.5i)T2 |
| 31 | 1+(0.766−4.34i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−1.29−4.82i)T+(−32.0+18.5i)T2 |
| 41 | 1+(3.72−4.43i)T+(−7.11−40.3i)T2 |
| 43 | 1+(−5.20−11.1i)T+(−27.6+32.9i)T2 |
| 47 | 1+(−0.919+1.31i)T+(−16.0−44.1i)T2 |
| 53 | 1+(0.785−0.785i)T−53iT2 |
| 59 | 1+(−13.8+5.03i)T+(45.1−37.9i)T2 |
| 61 | 1+(0.115+0.653i)T+(−57.3+20.8i)T2 |
| 67 | 1+(3.62−0.317i)T+(65.9−11.6i)T2 |
| 71 | 1+(−9.91−5.72i)T+(35.5+61.4i)T2 |
| 73 | 1+(0.410−1.53i)T+(−63.2−36.5i)T2 |
| 79 | 1+(−4.82−5.74i)T+(−13.7+77.7i)T2 |
| 83 | 1+(0.846−9.67i)T+(−81.7−14.4i)T2 |
| 89 | 1+(0.959+1.66i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.12+1.45i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.31087751552513282780668050348, −11.08399329938733849460882360542, −10.25636610636599922207488899951, −9.797209389348181589825224686761, −8.394592707223629892650511882633, −7.897167386541578042145519721343, −6.68411827452824663370697690363, −4.98033549110376322725395695834, −3.97154597842396610796302916503, −2.62454268700022192849792986736,
0.30993204734029730618284459289, 2.40743766971324214125279472850, 3.71793943653912669207109403010, 5.77211042915921914841994785667, 6.75630486833895612073629853086, 7.66629837498445791363078667649, 8.574548609851691439494946869651, 9.101766876575202338601141679933, 10.79494816399835230079649744289, 11.44200166086505728710371059183