L(s) = 1 | + (−0.996 − 0.0871i)2-s + (1.12 − 1.31i)3-s + (0.984 + 0.173i)4-s + (−1.30 + 1.81i)5-s + (−1.23 + 1.21i)6-s + (−3.63 − 2.54i)7-s + (−0.965 − 0.258i)8-s + (−0.483 − 2.96i)9-s + (1.46 − 1.69i)10-s + (1.06 − 2.91i)11-s + (1.33 − 1.10i)12-s + (−0.443 − 5.06i)13-s + (3.39 + 2.85i)14-s + (0.922 + 3.76i)15-s + (0.939 + 0.342i)16-s + (−2.90 + 0.778i)17-s + ⋯ |
L(s) = 1 | + (−0.704 − 0.0616i)2-s + (0.647 − 0.761i)3-s + (0.492 + 0.0868i)4-s + (−0.585 + 0.810i)5-s + (−0.503 + 0.496i)6-s + (−1.37 − 0.961i)7-s + (−0.341 − 0.0915i)8-s + (−0.161 − 0.986i)9-s + (0.462 − 0.534i)10-s + (0.319 − 0.879i)11-s + (0.385 − 0.318i)12-s + (−0.122 − 1.40i)13-s + (0.908 + 0.762i)14-s + (0.238 + 0.971i)15-s + (0.234 + 0.0855i)16-s + (−0.704 + 0.188i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.505+0.863i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(−0.505+0.863i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.505+0.863i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), −0.505+0.863i)
|
Particular Values
L(1) |
≈ |
0.366714−0.639443i |
L(21) |
≈ |
0.366714−0.639443i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.996+0.0871i)T |
| 3 | 1+(−1.12+1.31i)T |
| 5 | 1+(1.30−1.81i)T |
good | 7 | 1+(3.63+2.54i)T+(2.39+6.57i)T2 |
| 11 | 1+(−1.06+2.91i)T+(−8.42−7.07i)T2 |
| 13 | 1+(0.443+5.06i)T+(−12.8+2.25i)T2 |
| 17 | 1+(2.90−0.778i)T+(14.7−8.5i)T2 |
| 19 | 1+(−4.83+2.78i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3.26−4.66i)T+(−7.86+21.6i)T2 |
| 29 | 1+(0.945−0.793i)T+(5.03−28.5i)T2 |
| 31 | 1+(0.863−4.89i)T+(−29.1−10.6i)T2 |
| 37 | 1+(0.154+0.578i)T+(−32.0+18.5i)T2 |
| 41 | 1+(−0.230+0.275i)T+(−7.11−40.3i)T2 |
| 43 | 1+(−0.843−1.80i)T+(−27.6+32.9i)T2 |
| 47 | 1+(−4.62+6.60i)T+(−16.0−44.1i)T2 |
| 53 | 1+(5.61−5.61i)T−53iT2 |
| 59 | 1+(4.22−1.53i)T+(45.1−37.9i)T2 |
| 61 | 1+(−0.293−1.66i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−8.65+0.757i)T+(65.9−11.6i)T2 |
| 71 | 1+(−4.54−2.62i)T+(35.5+61.4i)T2 |
| 73 | 1+(−0.146+0.545i)T+(−63.2−36.5i)T2 |
| 79 | 1+(−4.05−4.82i)T+(−13.7+77.7i)T2 |
| 83 | 1+(−1.20+13.7i)T+(−81.7−14.4i)T2 |
| 89 | 1+(6.98+12.0i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−13.7+6.41i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44253468434214415254077425057, −10.60289693009784208465753270884, −9.654146502114500644527843332868, −8.672441718431812612391816229037, −7.49513533231460737380069443165, −7.07035958879863498947971698097, −6.06385561115320096041875075984, −3.44669836210506434875014242953, −3.05135428409544367883328721200, −0.64716839361139304019030809017,
2.29481323420064726230465107854, 3.75012004561011786154855289481, 4.94305308826949734031113316698, 6.44241991544440203930145196564, 7.59086865030396193554221553271, 8.816699812213119525976020385312, 9.322260505723927557496466631257, 9.798644524393233141831712196004, 11.27339226486821979853534277622, 12.15457775455885021954783689729