Properties

Label 2-270-135.113-c1-0-14
Degree $2$
Conductor $270$
Sign $-0.505 + 0.863i$
Analytic cond. $2.15596$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.996 − 0.0871i)2-s + (1.12 − 1.31i)3-s + (0.984 + 0.173i)4-s + (−1.30 + 1.81i)5-s + (−1.23 + 1.21i)6-s + (−3.63 − 2.54i)7-s + (−0.965 − 0.258i)8-s + (−0.483 − 2.96i)9-s + (1.46 − 1.69i)10-s + (1.06 − 2.91i)11-s + (1.33 − 1.10i)12-s + (−0.443 − 5.06i)13-s + (3.39 + 2.85i)14-s + (0.922 + 3.76i)15-s + (0.939 + 0.342i)16-s + (−2.90 + 0.778i)17-s + ⋯
L(s)  = 1  + (−0.704 − 0.0616i)2-s + (0.647 − 0.761i)3-s + (0.492 + 0.0868i)4-s + (−0.585 + 0.810i)5-s + (−0.503 + 0.496i)6-s + (−1.37 − 0.961i)7-s + (−0.341 − 0.0915i)8-s + (−0.161 − 0.986i)9-s + (0.462 − 0.534i)10-s + (0.319 − 0.879i)11-s + (0.385 − 0.318i)12-s + (−0.122 − 1.40i)13-s + (0.908 + 0.762i)14-s + (0.238 + 0.971i)15-s + (0.234 + 0.0855i)16-s + (−0.704 + 0.188i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.505 + 0.863i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.505 + 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $-0.505 + 0.863i$
Analytic conductor: \(2.15596\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1/2),\ -0.505 + 0.863i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.366714 - 0.639443i\)
\(L(\frac12)\) \(\approx\) \(0.366714 - 0.639443i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.996 + 0.0871i)T \)
3 \( 1 + (-1.12 + 1.31i)T \)
5 \( 1 + (1.30 - 1.81i)T \)
good7 \( 1 + (3.63 + 2.54i)T + (2.39 + 6.57i)T^{2} \)
11 \( 1 + (-1.06 + 2.91i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (0.443 + 5.06i)T + (-12.8 + 2.25i)T^{2} \)
17 \( 1 + (2.90 - 0.778i)T + (14.7 - 8.5i)T^{2} \)
19 \( 1 + (-4.83 + 2.78i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-3.26 - 4.66i)T + (-7.86 + 21.6i)T^{2} \)
29 \( 1 + (0.945 - 0.793i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (0.863 - 4.89i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (0.154 + 0.578i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + (-0.230 + 0.275i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (-0.843 - 1.80i)T + (-27.6 + 32.9i)T^{2} \)
47 \( 1 + (-4.62 + 6.60i)T + (-16.0 - 44.1i)T^{2} \)
53 \( 1 + (5.61 - 5.61i)T - 53iT^{2} \)
59 \( 1 + (4.22 - 1.53i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-0.293 - 1.66i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-8.65 + 0.757i)T + (65.9 - 11.6i)T^{2} \)
71 \( 1 + (-4.54 - 2.62i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.146 + 0.545i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (-4.05 - 4.82i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-1.20 + 13.7i)T + (-81.7 - 14.4i)T^{2} \)
89 \( 1 + (6.98 + 12.0i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-13.7 + 6.41i)T + (62.3 - 74.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44253468434214415254077425057, −10.60289693009784208465753270884, −9.654146502114500644527843332868, −8.672441718431812612391816229037, −7.49513533231460737380069443165, −7.07035958879863498947971698097, −6.06385561115320096041875075984, −3.44669836210506434875014242953, −3.05135428409544367883328721200, −0.64716839361139304019030809017, 2.29481323420064726230465107854, 3.75012004561011786154855289481, 4.94305308826949734031113316698, 6.44241991544440203930145196564, 7.59086865030396193554221553271, 8.816699812213119525976020385312, 9.322260505723927557496466631257, 9.798644524393233141831712196004, 11.27339226486821979853534277622, 12.15457775455885021954783689729

Graph of the $Z$-function along the critical line