L(s) = 1 | + (0.996 + 0.0871i)2-s + (−1.08 − 1.35i)3-s + (0.984 + 0.173i)4-s + (−2.15 − 0.611i)5-s + (−0.963 − 1.43i)6-s + (−3.60 − 2.52i)7-s + (0.965 + 0.258i)8-s + (−0.646 + 2.92i)9-s + (−2.08 − 0.796i)10-s + (0.474 − 1.30i)11-s + (−0.833 − 1.51i)12-s + (−0.410 − 4.69i)13-s + (−3.36 − 2.82i)14-s + (1.50 + 3.56i)15-s + (0.939 + 0.342i)16-s + (5.62 − 1.50i)17-s + ⋯ |
L(s) = 1 | + (0.704 + 0.0616i)2-s + (−0.626 − 0.779i)3-s + (0.492 + 0.0868i)4-s + (−0.961 − 0.273i)5-s + (−0.393 − 0.587i)6-s + (−1.36 − 0.953i)7-s + (0.341 + 0.0915i)8-s + (−0.215 + 0.976i)9-s + (−0.660 − 0.251i)10-s + (0.143 − 0.393i)11-s + (−0.240 − 0.438i)12-s + (−0.113 − 1.30i)13-s + (−0.900 − 0.755i)14-s + (0.389 + 0.921i)15-s + (0.234 + 0.0855i)16-s + (1.36 − 0.365i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.680+0.732i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(−0.680+0.732i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.680+0.732i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), −0.680+0.732i)
|
Particular Values
L(1) |
≈ |
0.363306−0.833684i |
L(21) |
≈ |
0.363306−0.833684i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.996−0.0871i)T |
| 3 | 1+(1.08+1.35i)T |
| 5 | 1+(2.15+0.611i)T |
good | 7 | 1+(3.60+2.52i)T+(2.39+6.57i)T2 |
| 11 | 1+(−0.474+1.30i)T+(−8.42−7.07i)T2 |
| 13 | 1+(0.410+4.69i)T+(−12.8+2.25i)T2 |
| 17 | 1+(−5.62+1.50i)T+(14.7−8.5i)T2 |
| 19 | 1+(7.17−4.14i)T+(9.5−16.4i)T2 |
| 23 | 1+(−0.511−0.730i)T+(−7.86+21.6i)T2 |
| 29 | 1+(−4.04+3.39i)T+(5.03−28.5i)T2 |
| 31 | 1+(−1.07+6.11i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−0.319−1.19i)T+(−32.0+18.5i)T2 |
| 41 | 1+(−1.37+1.63i)T+(−7.11−40.3i)T2 |
| 43 | 1+(1.59+3.41i)T+(−27.6+32.9i)T2 |
| 47 | 1+(−2.26+3.23i)T+(−16.0−44.1i)T2 |
| 53 | 1+(6.56−6.56i)T−53iT2 |
| 59 | 1+(−2.97+1.08i)T+(45.1−37.9i)T2 |
| 61 | 1+(0.104+0.590i)T+(−57.3+20.8i)T2 |
| 67 | 1+(1.40−0.122i)T+(65.9−11.6i)T2 |
| 71 | 1+(−10.7−6.20i)T+(35.5+61.4i)T2 |
| 73 | 1+(−0.128+0.481i)T+(−63.2−36.5i)T2 |
| 79 | 1+(7.34+8.75i)T+(−13.7+77.7i)T2 |
| 83 | 1+(−0.841+9.61i)T+(−81.7−14.4i)T2 |
| 89 | 1+(−3.02−5.24i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.52−1.64i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.92312675806580038826100473802, −10.76666078120617935762184161709, −10.08202114821796053046259995496, −8.176782999389268547481426287593, −7.51933591942741353971890489406, −6.48731179652568632426788034547, −5.63145655185429090254083192167, −4.15843880630540749803628540220, −3.10085911677825735997097379896, −0.59429507533099108736138336568,
2.91620345588969918315596789349, 3.95592058770276953320880262225, 4.95498370890109934075471069652, 6.35309978308886628961519990178, 6.80283905413211652182971751414, 8.613139990146547106608500002878, 9.573433838259141062565574080070, 10.56506632435701292739516634633, 11.49173578541459841350980845987, 12.36719710458014738829163640996