L(s) = 1 | + (0.996 + 0.0871i)2-s + (0.600 + 1.62i)3-s + (0.984 + 0.173i)4-s + (−0.702 + 2.12i)5-s + (0.456 + 1.67i)6-s + (−0.580 − 0.406i)7-s + (0.965 + 0.258i)8-s + (−2.27 + 1.95i)9-s + (−0.885 + 2.05i)10-s + (0.183 − 0.502i)11-s + (0.309 + 1.70i)12-s + (−0.260 − 2.97i)13-s + (−0.542 − 0.455i)14-s + (−3.87 + 0.132i)15-s + (0.939 + 0.342i)16-s + (1.53 − 0.410i)17-s + ⋯ |
L(s) = 1 | + (0.704 + 0.0616i)2-s + (0.346 + 0.937i)3-s + (0.492 + 0.0868i)4-s + (−0.314 + 0.949i)5-s + (0.186 + 0.682i)6-s + (−0.219 − 0.153i)7-s + (0.341 + 0.0915i)8-s + (−0.759 + 0.650i)9-s + (−0.279 + 0.649i)10-s + (0.0551 − 0.151i)11-s + (0.0893 + 0.491i)12-s + (−0.0722 − 0.825i)13-s + (−0.145 − 0.121i)14-s + (−0.999 + 0.0342i)15-s + (0.234 + 0.0855i)16-s + (0.371 − 0.0995i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.188−0.982i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(0.188−0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.188−0.982i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), 0.188−0.982i)
|
Particular Values
L(1) |
≈ |
1.49209+1.23343i |
L(21) |
≈ |
1.49209+1.23343i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.996−0.0871i)T |
| 3 | 1+(−0.600−1.62i)T |
| 5 | 1+(0.702−2.12i)T |
good | 7 | 1+(0.580+0.406i)T+(2.39+6.57i)T2 |
| 11 | 1+(−0.183+0.502i)T+(−8.42−7.07i)T2 |
| 13 | 1+(0.260+2.97i)T+(−12.8+2.25i)T2 |
| 17 | 1+(−1.53+0.410i)T+(14.7−8.5i)T2 |
| 19 | 1+(−4.21+2.43i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3.34−4.77i)T+(−7.86+21.6i)T2 |
| 29 | 1+(−3.54+2.97i)T+(5.03−28.5i)T2 |
| 31 | 1+(−0.226+1.28i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−1.90−7.10i)T+(−32.0+18.5i)T2 |
| 41 | 1+(−3.75+4.47i)T+(−7.11−40.3i)T2 |
| 43 | 1+(3.29+7.06i)T+(−27.6+32.9i)T2 |
| 47 | 1+(6.41−9.15i)T+(−16.0−44.1i)T2 |
| 53 | 1+(−4.01+4.01i)T−53iT2 |
| 59 | 1+(6.74−2.45i)T+(45.1−37.9i)T2 |
| 61 | 1+(0.669+3.79i)T+(−57.3+20.8i)T2 |
| 67 | 1+(15.3−1.34i)T+(65.9−11.6i)T2 |
| 71 | 1+(−2.33−1.35i)T+(35.5+61.4i)T2 |
| 73 | 1+(−3.25+12.1i)T+(−63.2−36.5i)T2 |
| 79 | 1+(2.08+2.48i)T+(−13.7+77.7i)T2 |
| 83 | 1+(1.15−13.1i)T+(−81.7−14.4i)T2 |
| 89 | 1+(7.06+12.2i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.89−2.74i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.93064817315513257294981552245, −11.19085327738106011979394096540, −10.33862221080146851557648202987, −9.533694042040302811843504708423, −8.103027503000509218352518964169, −7.21482731856450691196426938608, −5.91843961825933040993146446642, −4.84586690445199125714318446181, −3.50887998856802138922063429568, −2.87765237049932738613520995638,
1.40987515653964981267377994434, 3.02183275317500689010303473255, 4.41074173486676797831988047305, 5.62520746800217833674029608010, 6.72668646089757787791079865078, 7.71602093205681142602789187319, 8.701098977049143247763416228582, 9.643075006656895983955594487123, 11.21195888695071731081297308066, 12.13890800173478494890306156726