L(s) = 1 | + (−0.819 − 0.573i)2-s + (−1.69 − 0.364i)3-s + (0.342 + 0.939i)4-s + (−1.52 + 1.63i)5-s + (1.17 + 1.26i)6-s + (−1.90 − 4.08i)7-s + (0.258 − 0.965i)8-s + (2.73 + 1.23i)9-s + (2.18 − 0.470i)10-s + (2.45 + 2.92i)11-s + (−0.236 − 1.71i)12-s + (2.63 + 3.76i)13-s + (−0.783 + 4.44i)14-s + (3.17 − 2.22i)15-s + (−0.766 + 0.642i)16-s + (0.996 + 3.72i)17-s + ⋯ |
L(s) = 1 | + (−0.579 − 0.405i)2-s + (−0.977 − 0.210i)3-s + (0.171 + 0.469i)4-s + (−0.680 + 0.733i)5-s + (0.480 + 0.518i)6-s + (−0.720 − 1.54i)7-s + (0.0915 − 0.341i)8-s + (0.911 + 0.411i)9-s + (0.691 − 0.148i)10-s + (0.739 + 0.880i)11-s + (−0.0683 − 0.495i)12-s + (0.730 + 1.04i)13-s + (−0.209 + 1.18i)14-s + (0.819 − 0.573i)15-s + (−0.191 + 0.160i)16-s + (0.241 + 0.902i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.935−0.354i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(0.935−0.354i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.935−0.354i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), 0.935−0.354i)
|
Particular Values
L(1) |
≈ |
0.564608+0.103476i |
L(21) |
≈ |
0.564608+0.103476i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.819+0.573i)T |
| 3 | 1+(1.69+0.364i)T |
| 5 | 1+(1.52−1.63i)T |
good | 7 | 1+(1.90+4.08i)T+(−4.49+5.36i)T2 |
| 11 | 1+(−2.45−2.92i)T+(−1.91+10.8i)T2 |
| 13 | 1+(−2.63−3.76i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−0.996−3.72i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−1.79+1.03i)T+(9.5−16.4i)T2 |
| 23 | 1+(−5.25−2.45i)T+(14.7+17.6i)T2 |
| 29 | 1+(−0.501−2.84i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−2.26+0.825i)T+(23.7−19.9i)T2 |
| 37 | 1+(−5.03+1.34i)T+(32.0−18.5i)T2 |
| 41 | 1+(7.59+1.34i)T+(38.5+14.0i)T2 |
| 43 | 1+(0.879−10.0i)T+(−42.3−7.46i)T2 |
| 47 | 1+(2.65−1.23i)T+(30.2−36.0i)T2 |
| 53 | 1+(0.405+0.405i)T+53iT2 |
| 59 | 1+(6.05+5.07i)T+(10.2+58.1i)T2 |
| 61 | 1+(−12.9−4.72i)T+(46.7+39.2i)T2 |
| 67 | 1+(3.68−2.58i)T+(22.9−62.9i)T2 |
| 71 | 1+(−9.41−5.43i)T+(35.5+61.4i)T2 |
| 73 | 1+(0.262+0.0703i)T+(63.2+36.5i)T2 |
| 79 | 1+(−10.2+1.80i)T+(74.2−27.0i)T2 |
| 83 | 1+(−0.680+0.972i)T+(−28.3−77.9i)T2 |
| 89 | 1+(2.08+3.60i)T+(−44.5+77.0i)T2 |
| 97 | 1+(7.69+0.673i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62981663482025826062867022221, −11.07318790159762480248621333784, −10.27131468055521950175903819977, −9.484003403848063450693345661662, −7.84166198832374700995297623195, −6.85828450558643760160806291748, −6.60280669027369632658134255843, −4.40001295759807702210539383040, −3.58504915641138565615946483265, −1.25429788771716571724830519055,
0.73740707082981341139838875428, 3.33859481506123119800096603759, 5.10258763699954669024175503320, 5.80351433875033082320738843711, 6.74563281126892795301774389895, 8.209441982156458413987937125364, 8.968074161693609184329864766094, 9.772838344571540071254130075673, 11.06979328757383880172274657849, 11.81265905939190201359469318370