L(s) = 1 | + (0.819 + 0.573i)2-s + (0.264 + 1.71i)3-s + (0.342 + 0.939i)4-s + (−2.23 − 0.138i)5-s + (−0.765 + 1.55i)6-s + (0.660 + 1.41i)7-s + (−0.258 + 0.965i)8-s + (−2.86 + 0.903i)9-s + (−1.74 − 1.39i)10-s + (2.49 + 2.97i)11-s + (−1.51 + 0.833i)12-s + (−2.53 − 3.62i)13-s + (−0.271 + 1.53i)14-s + (−0.352 − 3.85i)15-s + (−0.766 + 0.642i)16-s + (1.52 + 5.69i)17-s + ⋯ |
L(s) = 1 | + (0.579 + 0.405i)2-s + (0.152 + 0.988i)3-s + (0.171 + 0.469i)4-s + (−0.998 − 0.0618i)5-s + (−0.312 + 0.634i)6-s + (0.249 + 0.535i)7-s + (−0.0915 + 0.341i)8-s + (−0.953 + 0.301i)9-s + (−0.553 − 0.440i)10-s + (0.753 + 0.897i)11-s + (−0.438 + 0.240i)12-s + (−0.703 − 1.00i)13-s + (−0.0725 + 0.411i)14-s + (−0.0910 − 0.995i)15-s + (−0.191 + 0.160i)16-s + (0.370 + 1.38i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.541−0.840i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(−0.541−0.840i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.541−0.840i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), −0.541−0.840i)
|
Particular Values
L(1) |
≈ |
0.726040+1.33188i |
L(21) |
≈ |
0.726040+1.33188i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.819−0.573i)T |
| 3 | 1+(−0.264−1.71i)T |
| 5 | 1+(2.23+0.138i)T |
good | 7 | 1+(−0.660−1.41i)T+(−4.49+5.36i)T2 |
| 11 | 1+(−2.49−2.97i)T+(−1.91+10.8i)T2 |
| 13 | 1+(2.53+3.62i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−1.52−5.69i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−5.43+3.13i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.84+0.862i)T+(14.7+17.6i)T2 |
| 29 | 1+(0.651+3.69i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−4.48+1.63i)T+(23.7−19.9i)T2 |
| 37 | 1+(−5.27+1.41i)T+(32.0−18.5i)T2 |
| 41 | 1+(−1.36−0.240i)T+(38.5+14.0i)T2 |
| 43 | 1+(0.741−8.47i)T+(−42.3−7.46i)T2 |
| 47 | 1+(2.58−1.20i)T+(30.2−36.0i)T2 |
| 53 | 1+(−4.58−4.58i)T+53iT2 |
| 59 | 1+(−0.286−0.240i)T+(10.2+58.1i)T2 |
| 61 | 1+(−3.34−1.21i)T+(46.7+39.2i)T2 |
| 67 | 1+(−9.14+6.40i)T+(22.9−62.9i)T2 |
| 71 | 1+(13.8+7.99i)T+(35.5+61.4i)T2 |
| 73 | 1+(15.8+4.24i)T+(63.2+36.5i)T2 |
| 79 | 1+(−0.515+0.0908i)T+(74.2−27.0i)T2 |
| 83 | 1+(−6.06+8.66i)T+(−28.3−77.9i)T2 |
| 89 | 1+(2.59+4.49i)T+(−44.5+77.0i)T2 |
| 97 | 1+(11.4+1.00i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.07016996841701875619584619138, −11.57754615700751342118738579815, −10.35686731877249381868935404615, −9.360211614288587877751584808687, −8.228096452384737037614173885936, −7.53300667685356143112092775831, −6.00467621767809857972921601858, −4.87752262758142254624901490751, −4.07701804646511460352838907064, −2.88015023871391165233455174295,
1.06568391578984764474728369134, 2.93648337889104611703500157957, 4.03617933401788104034199485399, 5.42103167874383518748810763811, 6.85088725814550800218979919673, 7.42585290291932953146723395861, 8.570832259285214721706850205714, 9.733781267601093933148486188033, 11.23479946185670083747295597405, 11.77797577196894023887109453869