L(s) = 1 | + (0.819 + 0.573i)2-s + (−1.72 + 0.169i)3-s + (0.342 + 0.939i)4-s + (2.07 − 0.845i)5-s + (−1.50 − 0.849i)6-s + (0.101 + 0.217i)7-s + (−0.258 + 0.965i)8-s + (2.94 − 0.585i)9-s + (2.18 + 0.494i)10-s + (2.07 + 2.47i)11-s + (−0.749 − 1.56i)12-s + (1.10 + 1.57i)13-s + (−0.0417 + 0.236i)14-s + (−3.42 + 1.80i)15-s + (−0.766 + 0.642i)16-s + (0.935 + 3.48i)17-s + ⋯ |
L(s) = 1 | + (0.579 + 0.405i)2-s + (−0.995 + 0.0980i)3-s + (0.171 + 0.469i)4-s + (0.925 − 0.378i)5-s + (−0.616 − 0.346i)6-s + (0.0383 + 0.0823i)7-s + (−0.0915 + 0.341i)8-s + (0.980 − 0.195i)9-s + (0.689 + 0.156i)10-s + (0.625 + 0.745i)11-s + (−0.216 − 0.450i)12-s + (0.306 + 0.437i)13-s + (−0.0111 + 0.0632i)14-s + (−0.884 + 0.466i)15-s + (−0.191 + 0.160i)16-s + (0.226 + 0.846i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.654−0.756i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(0.654−0.756i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.654−0.756i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(257,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), 0.654−0.756i)
|
Particular Values
L(1) |
≈ |
1.39133+0.636105i |
L(21) |
≈ |
1.39133+0.636105i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.819−0.573i)T |
| 3 | 1+(1.72−0.169i)T |
| 5 | 1+(−2.07+0.845i)T |
good | 7 | 1+(−0.101−0.217i)T+(−4.49+5.36i)T2 |
| 11 | 1+(−2.07−2.47i)T+(−1.91+10.8i)T2 |
| 13 | 1+(−1.10−1.57i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−0.935−3.48i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−1.18+0.683i)T+(9.5−16.4i)T2 |
| 23 | 1+(6.16+2.87i)T+(14.7+17.6i)T2 |
| 29 | 1+(0.340+1.92i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−2.42+0.881i)T+(23.7−19.9i)T2 |
| 37 | 1+(−5.53+1.48i)T+(32.0−18.5i)T2 |
| 41 | 1+(−0.258−0.0455i)T+(38.5+14.0i)T2 |
| 43 | 1+(−0.573+6.54i)T+(−42.3−7.46i)T2 |
| 47 | 1+(11.9−5.56i)T+(30.2−36.0i)T2 |
| 53 | 1+(9.15+9.15i)T+53iT2 |
| 59 | 1+(4.98+4.18i)T+(10.2+58.1i)T2 |
| 61 | 1+(14.0+5.13i)T+(46.7+39.2i)T2 |
| 67 | 1+(3.34−2.34i)T+(22.9−62.9i)T2 |
| 71 | 1+(−9.56−5.52i)T+(35.5+61.4i)T2 |
| 73 | 1+(−2.32−0.623i)T+(63.2+36.5i)T2 |
| 79 | 1+(−2.06+0.364i)T+(74.2−27.0i)T2 |
| 83 | 1+(5.39−7.69i)T+(−28.3−77.9i)T2 |
| 89 | 1+(−1.90−3.29i)T+(−44.5+77.0i)T2 |
| 97 | 1+(7.17+0.627i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.24866534377630973784502385920, −11.29896161030175588103045108700, −10.14765608870265169714046018071, −9.383809842216087206251988242754, −8.015841814489051551796170786622, −6.58541700135475499592437965394, −6.10789813974056648795115349318, −4.98354528917355169643562673041, −4.05431294458814606930417169524, −1.81554551080132988763969218777,
1.39677677731163618377617472832, 3.17570090883762488326061285671, 4.68520498058350383825984503296, 5.85446256013743660967492428383, 6.30434028527976866861863285478, 7.61963301760474160442486285135, 9.350813243192121706065566330353, 10.13808201695676951396321565473, 11.02839051113452761582959044866, 11.71090928263355561365852147114