L(s) = 1 | + (0.642 − 0.766i)2-s + (−0.726 − 1.57i)3-s + (−0.173 − 0.984i)4-s + (1.96 − 1.06i)5-s + (−1.67 − 0.454i)6-s + (4.83 + 0.853i)7-s + (−0.866 − 0.500i)8-s + (−1.94 + 2.28i)9-s + (0.445 − 2.19i)10-s + (−1.60 + 0.584i)11-s + (−1.42 + 0.988i)12-s + (−1.95 − 2.32i)13-s + (3.76 − 3.15i)14-s + (−3.10 − 2.31i)15-s + (−0.939 + 0.342i)16-s + (−3.04 + 1.75i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (−0.419 − 0.907i)3-s + (−0.0868 − 0.492i)4-s + (0.878 − 0.477i)5-s + (−0.682 − 0.185i)6-s + (1.82 + 0.322i)7-s + (−0.306 − 0.176i)8-s + (−0.648 + 0.761i)9-s + (0.140 − 0.692i)10-s + (−0.484 + 0.176i)11-s + (−0.410 + 0.285i)12-s + (−0.541 − 0.645i)13-s + (1.00 − 0.843i)14-s + (−0.801 − 0.597i)15-s + (−0.234 + 0.0855i)16-s + (−0.737 + 0.425i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.181+0.983i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(−0.181+0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.181+0.983i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(259,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), −0.181+0.983i)
|
Particular Values
L(1) |
≈ |
1.08351−1.30154i |
L(21) |
≈ |
1.08351−1.30154i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.642+0.766i)T |
| 3 | 1+(0.726+1.57i)T |
| 5 | 1+(−1.96+1.06i)T |
good | 7 | 1+(−4.83−0.853i)T+(6.57+2.39i)T2 |
| 11 | 1+(1.60−0.584i)T+(8.42−7.07i)T2 |
| 13 | 1+(1.95+2.32i)T+(−2.25+12.8i)T2 |
| 17 | 1+(3.04−1.75i)T+(8.5−14.7i)T2 |
| 19 | 1+(0.936−1.62i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.79−0.492i)T+(21.6−7.86i)T2 |
| 29 | 1+(−2.46−2.06i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.994−5.64i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−1.92+1.11i)T+(18.5−32.0i)T2 |
| 41 | 1+(0.451−0.379i)T+(7.11−40.3i)T2 |
| 43 | 1+(−3.99−10.9i)T+(−32.9+27.6i)T2 |
| 47 | 1+(13.0+2.30i)T+(44.1+16.0i)T2 |
| 53 | 1+13.5iT−53T2 |
| 59 | 1+(−4.14−1.50i)T+(45.1+37.9i)T2 |
| 61 | 1+(−1.58+8.98i)T+(−57.3−20.8i)T2 |
| 67 | 1+(−4.47−5.32i)T+(−11.6+65.9i)T2 |
| 71 | 1+(−2.54−4.40i)T+(−35.5+61.4i)T2 |
| 73 | 1+(11.3+6.52i)T+(36.5+63.2i)T2 |
| 79 | 1+(−4.76−3.99i)T+(13.7+77.7i)T2 |
| 83 | 1+(−2.47+2.94i)T+(−14.4−81.7i)T2 |
| 89 | 1+(0.280−0.485i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−2.45−6.75i)T+(−74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74681969949951846884947748109, −10.96079420562879778980714507673, −10.07401859483918537573211906946, −8.557447589210433716741693146032, −7.918275396450432170962768751214, −6.41838858677418896838976120219, −5.28506840135424408175060368550, −4.81217061360378970995451661530, −2.37876783880269770556079623381, −1.50013571180351682427847651803,
2.38750218519510380805570780994, 4.28892028757515149407215648500, 4.97568058997454717248750180844, 5.94517965415082109422250890286, 7.12684662808173551610852020582, 8.304412464106792180210164281979, 9.350465171528011574602884771641, 10.45795191394607768829103496869, 11.20901384389406478858217828923, 11.92678138025859801739322230710