L(s) = 1 | + (−0.984 + 0.173i)2-s + (0.642 − 0.766i)3-s + (0.939 − 0.342i)4-s + (−0.5 + 0.866i)6-s + (0.524 − 1.43i)7-s + (−0.866 + 0.5i)8-s + (−0.173 − 0.984i)9-s + (0.342 − 0.939i)12-s + (−0.266 + 1.50i)14-s + (0.766 − 0.642i)16-s + (0.342 + 0.939i)18-s + (−0.766 − 1.32i)21-s + (−0.642 − 1.76i)23-s + (−0.173 + 0.984i)24-s + (−0.866 − 0.500i)27-s − 1.53i·28-s + ⋯ |
L(s) = 1 | + (−0.984 + 0.173i)2-s + (0.642 − 0.766i)3-s + (0.939 − 0.342i)4-s + (−0.5 + 0.866i)6-s + (0.524 − 1.43i)7-s + (−0.866 + 0.5i)8-s + (−0.173 − 0.984i)9-s + (0.342 − 0.939i)12-s + (−0.266 + 1.50i)14-s + (0.766 − 0.642i)16-s + (0.342 + 0.939i)18-s + (−0.766 − 1.32i)21-s + (−0.642 − 1.76i)23-s + (−0.173 + 0.984i)24-s + (−0.866 − 0.500i)27-s − 1.53i·28-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)(−0.286+0.957i)Λ(1−s)
Λ(s)=(=(2700s/2ΓC(s)L(s)(−0.286+0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
−0.286+0.957i
|
Analytic conductor: |
1.34747 |
Root analytic conductor: |
1.16080 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2700(2551,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :0), −0.286+0.957i)
|
Particular Values
L(21) |
≈ |
0.9783097519 |
L(21) |
≈ |
0.9783097519 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.984−0.173i)T |
| 3 | 1+(−0.642+0.766i)T |
| 5 | 1 |
good | 7 | 1+(−0.524+1.43i)T+(−0.766−0.642i)T2 |
| 11 | 1+(−0.173+0.984i)T2 |
| 13 | 1+(−0.939−0.342i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.642+1.76i)T+(−0.766+0.642i)T2 |
| 29 | 1+(−0.326−1.85i)T+(−0.939+0.342i)T2 |
| 31 | 1+(−0.766+0.642i)T2 |
| 37 | 1+(−0.5−0.866i)T2 |
| 41 | 1+(−0.0603+0.342i)T+(−0.939−0.342i)T2 |
| 43 | 1+(−0.642−0.766i)T+(−0.173+0.984i)T2 |
| 47 | 1+(−0.118+0.326i)T+(−0.766−0.642i)T2 |
| 53 | 1+T2 |
| 59 | 1+(−0.173−0.984i)T2 |
| 61 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 67 | 1+(−0.342−0.0603i)T+(0.939+0.342i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(−0.5+0.866i)T2 |
| 79 | 1+(0.939−0.342i)T2 |
| 83 | 1+(−0.342+0.0603i)T+(0.939−0.342i)T2 |
| 89 | 1+(−0.173−0.300i)T+(−0.5+0.866i)T2 |
| 97 | 1+(0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.668215478462960942155954387969, −7.987292492760681331729078467521, −7.45506660597276357904128138323, −6.78327496076935701114857377226, −6.21443983189667071583706754333, −4.89219198762681392258003728802, −3.81747760709103412527986523361, −2.79181619916161648210137172965, −1.73461319208688640665134456575, −0.808289401177368800397972528983,
1.79392496398567069569763812558, 2.48359538950325078480539953720, 3.36504854255841829321577638191, 4.40859098661331588517012113835, 5.55988879020140216667723760034, 6.04480208281299186987125181893, 7.42472366617588390356882833819, 7.990479821873603614011478759010, 8.594215582176858476247169049888, 9.288153656828913580462220028896