L(s) = 1 | − 2·7-s + 13-s + 2·19-s − 31-s + 37-s + 43-s + 3·49-s + 2·61-s + 67-s + 73-s − 79-s − 2·91-s − 2·97-s + 103-s − 109-s + ⋯ |
L(s) = 1 | − 2·7-s + 13-s + 2·19-s − 31-s + 37-s + 43-s + 3·49-s + 2·61-s + 67-s + 73-s − 79-s − 2·91-s − 2·97-s + 103-s − 109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.024987231\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.024987231\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( ( 1 + T )^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 + T )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.369894900461193934825877715407, −8.315847245919080541688146615858, −7.33552088663502316587376717662, −6.76350900263612993765666679587, −5.93419497994444199209392128140, −5.40533598838664707644239047412, −3.95439187298776558510360491013, −3.41610161486337847990248745465, −2.59911500477229605674785362844, −0.947520220347311601026913039911,
0.947520220347311601026913039911, 2.59911500477229605674785362844, 3.41610161486337847990248745465, 3.95439187298776558510360491013, 5.40533598838664707644239047412, 5.93419497994444199209392128140, 6.76350900263612993765666679587, 7.33552088663502316587376717662, 8.315847245919080541688146615858, 9.369894900461193934825877715407