L(s) = 1 | − 2·7-s + 13-s + 2·19-s − 31-s + 37-s + 43-s + 3·49-s + 2·61-s + 67-s + 73-s − 79-s − 2·91-s − 2·97-s + 103-s − 109-s + ⋯ |
L(s) = 1 | − 2·7-s + 13-s + 2·19-s − 31-s + 37-s + 43-s + 3·49-s + 2·61-s + 67-s + 73-s − 79-s − 2·91-s − 2·97-s + 103-s − 109-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2700s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
1
|
Analytic conductor: |
1.34747 |
Root analytic conductor: |
1.16080 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ2700(701,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.024987231 |
L(21) |
≈ |
1.024987231 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | (1+T)2 |
| 11 | (1−T)(1+T) |
| 13 | 1−T+T2 |
| 17 | (1−T)(1+T) |
| 19 | (1−T)2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | 1+T+T2 |
| 37 | 1−T+T2 |
| 41 | (1−T)(1+T) |
| 43 | 1−T+T2 |
| 47 | (1−T)(1+T) |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | (1−T)2 |
| 67 | 1−T+T2 |
| 71 | (1−T)(1+T) |
| 73 | 1−T+T2 |
| 79 | 1+T+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1+T)2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.369894900461193934825877715407, −8.315847245919080541688146615858, −7.33552088663502316587376717662, −6.76350900263612993765666679587, −5.93419497994444199209392128140, −5.40533598838664707644239047412, −3.95439187298776558510360491013, −3.41610161486337847990248745465, −2.59911500477229605674785362844, −0.947520220347311601026913039911,
0.947520220347311601026913039911, 2.59911500477229605674785362844, 3.41610161486337847990248745465, 3.95439187298776558510360491013, 5.40533598838664707644239047412, 5.93419497994444199209392128140, 6.76350900263612993765666679587, 7.33552088663502316587376717662, 8.315847245919080541688146615858, 9.369894900461193934825877715407