L(s) = 1 | + (−1.22 − 1.22i)13-s − 2i·19-s + 31-s + (1.22 − 1.22i)37-s + (−1.22 − 1.22i)43-s + i·49-s + 2·61-s + (−1.22 + 1.22i)67-s + (1.22 + 1.22i)73-s − i·79-s + (−1.22 − 1.22i)103-s − i·109-s + ⋯ |
L(s) = 1 | + (−1.22 − 1.22i)13-s − 2i·19-s + 31-s + (1.22 − 1.22i)37-s + (−1.22 − 1.22i)43-s + i·49-s + 2·61-s + (−1.22 + 1.22i)67-s + (1.22 + 1.22i)73-s − i·79-s + (−1.22 − 1.22i)103-s − i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.326 + 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.326 + 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.022667898\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.022667898\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + 2iT - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 79 | \( 1 + iT - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.874755362378329211570210923988, −8.096285965999797326640339820756, −7.31452364580608769833795660672, −6.75143235765701948630419566653, −5.64764382446814432977078452388, −5.01640899342579018412891002441, −4.21237754841951144783603945009, −2.95367453565322765369292523219, −2.39064801727847079635113236791, −0.66704196694718698684290898265,
1.51530294258981332002446848611, 2.49280897995484442344852675242, 3.60906187662975308672006808065, 4.48273208693932452318536227393, 5.19374372976942847305689014475, 6.27949487807107560485534147151, 6.76013539513920542603117633402, 7.84175262947324996623184494635, 8.214001265338353712597708547347, 9.333291250172549011556694294631