L(s) = 1 | + (−1.22 − 1.22i)13-s − 2i·19-s + 31-s + (1.22 − 1.22i)37-s + (−1.22 − 1.22i)43-s + i·49-s + 2·61-s + (−1.22 + 1.22i)67-s + (1.22 + 1.22i)73-s − i·79-s + (−1.22 − 1.22i)103-s − i·109-s + ⋯ |
L(s) = 1 | + (−1.22 − 1.22i)13-s − 2i·19-s + 31-s + (1.22 − 1.22i)37-s + (−1.22 − 1.22i)43-s + i·49-s + 2·61-s + (−1.22 + 1.22i)67-s + (1.22 + 1.22i)73-s − i·79-s + (−1.22 − 1.22i)103-s − i·109-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)(0.326+0.945i)Λ(1−s)
Λ(s)=(=(2700s/2ΓC(s)L(s)(0.326+0.945i)Λ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
0.326+0.945i
|
Analytic conductor: |
1.34747 |
Root analytic conductor: |
1.16080 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2700(2593,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :0), 0.326+0.945i)
|
Particular Values
L(21) |
≈ |
1.022667898 |
L(21) |
≈ |
1.022667898 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−iT2 |
| 11 | 1+T2 |
| 13 | 1+(1.22+1.22i)T+iT2 |
| 17 | 1−iT2 |
| 19 | 1+2iT−T2 |
| 23 | 1+iT2 |
| 29 | 1−T2 |
| 31 | 1−T+T2 |
| 37 | 1+(−1.22+1.22i)T−iT2 |
| 41 | 1+T2 |
| 43 | 1+(1.22+1.22i)T+iT2 |
| 47 | 1−iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1−2T+T2 |
| 67 | 1+(1.22−1.22i)T−iT2 |
| 71 | 1+T2 |
| 73 | 1+(−1.22−1.22i)T+iT2 |
| 79 | 1+iT−T2 |
| 83 | 1+iT2 |
| 89 | 1−T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.874755362378329211570210923988, −8.096285965999797326640339820756, −7.31452364580608769833795660672, −6.75143235765701948630419566653, −5.64764382446814432977078452388, −5.01640899342579018412891002441, −4.21237754841951144783603945009, −2.95367453565322765369292523219, −2.39064801727847079635113236791, −0.66704196694718698684290898265,
1.51530294258981332002446848611, 2.49280897995484442344852675242, 3.60906187662975308672006808065, 4.48273208693932452318536227393, 5.19374372976942847305689014475, 6.27949487807107560485534147151, 6.76013539513920542603117633402, 7.84175262947324996623184494635, 8.214001265338353712597708547347, 9.333291250172549011556694294631