L(s) = 1 | − 2i·7-s + 2i·13-s − 3i·17-s − 5·19-s − 3i·23-s − 6·29-s + 5·31-s − 2i·37-s − 12·41-s + 8i·43-s − 12i·47-s + 3·49-s + 3i·53-s + 6·59-s − 7·61-s + ⋯ |
L(s) = 1 | − 0.755i·7-s + 0.554i·13-s − 0.727i·17-s − 1.14·19-s − 0.625i·23-s − 1.11·29-s + 0.898·31-s − 0.328i·37-s − 1.87·41-s + 1.21i·43-s − 1.75i·47-s + 0.428·49-s + 0.412i·53-s + 0.781·59-s − 0.896·61-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(2700s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
21.5596 |
Root analytic conductor: |
4.64323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2700(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.6298786856 |
L(21) |
≈ |
0.6298786856 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+2iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+3iT−17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+3iT−23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+12T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1+12iT−47T2 |
| 53 | 1−3iT−53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1+7T+61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1+16iT−73T2 |
| 79 | 1−T+79T2 |
| 83 | 1−15iT−83T2 |
| 89 | 1+12T+89T2 |
| 97 | 1−16iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.533760035414045311405967542191, −7.74070404352300971470179119877, −6.90644493267818336761274269203, −6.43073832395284345494871849228, −5.32564962376082343222952214163, −4.47530553601358451172067260392, −3.81462926068523236908028476419, −2.69345992915804009536340163311, −1.61374302097108356936335356159, −0.19522241933984479245536358872,
1.54933301357522248129436025119, 2.53406835853089939199932237955, 3.51657820152373293147002787362, 4.43171207048348375439391797315, 5.43131183881456093268905833899, 5.99494501538510585038114112460, 6.83193214428123948603486036627, 7.74900217606276847822930402353, 8.507701003224320979849503734115, 8.965139625393844551446875413928