Properties

Label 2-2700-5.4-c1-0-21
Degree $2$
Conductor $2700$
Sign $-0.894 + 0.447i$
Analytic cond. $21.5596$
Root an. cond. $4.64323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·7-s + 2i·13-s − 3i·17-s − 5·19-s − 3i·23-s − 6·29-s + 5·31-s − 2i·37-s − 12·41-s + 8i·43-s − 12i·47-s + 3·49-s + 3i·53-s + 6·59-s − 7·61-s + ⋯
L(s)  = 1  − 0.755i·7-s + 0.554i·13-s − 0.727i·17-s − 1.14·19-s − 0.625i·23-s − 1.11·29-s + 0.898·31-s − 0.328i·37-s − 1.87·41-s + 1.21i·43-s − 1.75i·47-s + 0.428·49-s + 0.412i·53-s + 0.781·59-s − 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2700\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(21.5596\)
Root analytic conductor: \(4.64323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2700} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2700,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6298786856\)
\(L(\frac12)\) \(\approx\) \(0.6298786856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + 3iT - 17T^{2} \)
19 \( 1 + 5T + 19T^{2} \)
23 \( 1 + 3iT - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 + 12T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 + 12iT - 47T^{2} \)
53 \( 1 - 3iT - 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 7T + 61T^{2} \)
67 \( 1 + 2iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 + 16iT - 73T^{2} \)
79 \( 1 - T + 79T^{2} \)
83 \( 1 - 15iT - 83T^{2} \)
89 \( 1 + 12T + 89T^{2} \)
97 \( 1 - 16iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.533760035414045311405967542191, −7.74070404352300971470179119877, −6.90644493267818336761274269203, −6.43073832395284345494871849228, −5.32564962376082343222952214163, −4.47530553601358451172067260392, −3.81462926068523236908028476419, −2.69345992915804009536340163311, −1.61374302097108356936335356159, −0.19522241933984479245536358872, 1.54933301357522248129436025119, 2.53406835853089939199932237955, 3.51657820152373293147002787362, 4.43171207048348375439391797315, 5.43131183881456093268905833899, 5.99494501538510585038114112460, 6.83193214428123948603486036627, 7.74900217606276847822930402353, 8.507701003224320979849503734115, 8.965139625393844551446875413928

Graph of the $Z$-function along the critical line