L(s) = 1 | + (−1.41 + 0.00186i)2-s + (−0.274 − 0.274i)3-s + (1.99 − 0.00528i)4-s + (−2.33 + 2.33i)5-s + (0.389 + 0.388i)6-s + 0.445i·7-s + (−2.82 + 0.0112i)8-s − 2.84i·9-s + (3.30 − 3.31i)10-s + (−0.541 + 0.541i)11-s + (−0.551 − 0.548i)12-s + (−3.22 − 3.22i)13-s + (−0.000833 − 0.630i)14-s + 1.28·15-s + (3.99 − 0.0211i)16-s − 17-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.00132i)2-s + (−0.158 − 0.158i)3-s + (0.999 − 0.00264i)4-s + (−1.04 + 1.04i)5-s + (0.158 + 0.158i)6-s + 0.168i·7-s + (−0.999 + 0.00396i)8-s − 0.949i·9-s + (1.04 − 1.04i)10-s + (−0.163 + 0.163i)11-s + (−0.159 − 0.158i)12-s + (−0.894 − 0.894i)13-s + (−0.000222 − 0.168i)14-s + 0.332·15-s + (0.999 − 0.00528i)16-s − 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.921 + 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.921 + 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0153607 - 0.0761705i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0153607 - 0.0761705i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 - 0.00186i)T \) |
| 17 | \( 1 + T \) |
good | 3 | \( 1 + (0.274 + 0.274i)T + 3iT^{2} \) |
| 5 | \( 1 + (2.33 - 2.33i)T - 5iT^{2} \) |
| 7 | \( 1 - 0.445iT - 7T^{2} \) |
| 11 | \( 1 + (0.541 - 0.541i)T - 11iT^{2} \) |
| 13 | \( 1 + (3.22 + 3.22i)T + 13iT^{2} \) |
| 19 | \( 1 + (5.38 + 5.38i)T + 19iT^{2} \) |
| 23 | \( 1 - 7.35iT - 23T^{2} \) |
| 29 | \( 1 + (4.91 + 4.91i)T + 29iT^{2} \) |
| 31 | \( 1 + 4.01T + 31T^{2} \) |
| 37 | \( 1 + (2.25 - 2.25i)T - 37iT^{2} \) |
| 41 | \( 1 + 8.61iT - 41T^{2} \) |
| 43 | \( 1 + (2.61 - 2.61i)T - 43iT^{2} \) |
| 47 | \( 1 - 0.997T + 47T^{2} \) |
| 53 | \( 1 + (-2.69 + 2.69i)T - 53iT^{2} \) |
| 59 | \( 1 + (8.74 - 8.74i)T - 59iT^{2} \) |
| 61 | \( 1 + (-7.55 - 7.55i)T + 61iT^{2} \) |
| 67 | \( 1 + (-9.29 - 9.29i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.68iT - 71T^{2} \) |
| 73 | \( 1 + 0.113iT - 73T^{2} \) |
| 79 | \( 1 - 5.48T + 79T^{2} \) |
| 83 | \( 1 + (4.04 + 4.04i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.6iT - 89T^{2} \) |
| 97 | \( 1 + 14.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38958819193385792596498468933, −10.60931723160311279301585374933, −9.615674645682939325007375518855, −8.586194207767826482321417477616, −7.36686082414033697954587902901, −7.05399553495596153440946594795, −5.74613058997108759041601582552, −3.73778277275632912080502894884, −2.55240867109139727274775062741, −0.07742693805914477655838073514,
2.01849518020895850763191125338, 4.03870989355796850754557465009, 5.14288923709050637717257087586, 6.69162577652936359591783991086, 7.82227039607648332916808033106, 8.391049434796618839839993763398, 9.325687833593365296021937417832, 10.51702423278383171109051843625, 11.16302555986734476910229059812, 12.26066424095010372414034046325