L(s) = 1 | + (−1.41 + 0.00186i)2-s + (−0.274 − 0.274i)3-s + (1.99 − 0.00528i)4-s + (−2.33 + 2.33i)5-s + (0.389 + 0.388i)6-s + 0.445i·7-s + (−2.82 + 0.0112i)8-s − 2.84i·9-s + (3.30 − 3.31i)10-s + (−0.541 + 0.541i)11-s + (−0.551 − 0.548i)12-s + (−3.22 − 3.22i)13-s + (−0.000833 − 0.630i)14-s + 1.28·15-s + (3.99 − 0.0211i)16-s − 17-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.00132i)2-s + (−0.158 − 0.158i)3-s + (0.999 − 0.00264i)4-s + (−1.04 + 1.04i)5-s + (0.158 + 0.158i)6-s + 0.168i·7-s + (−0.999 + 0.00396i)8-s − 0.949i·9-s + (1.04 − 1.04i)10-s + (−0.163 + 0.163i)11-s + (−0.159 − 0.158i)12-s + (−0.894 − 0.894i)13-s + (−0.000222 − 0.168i)14-s + 0.332·15-s + (0.999 − 0.00528i)16-s − 0.242·17-s + ⋯ |
Λ(s)=(=(272s/2ΓC(s)L(s)(−0.921+0.387i)Λ(2−s)
Λ(s)=(=(272s/2ΓC(s+1/2)L(s)(−0.921+0.387i)Λ(1−s)
Degree: |
2 |
Conductor: |
272
= 24⋅17
|
Sign: |
−0.921+0.387i
|
Analytic conductor: |
2.17193 |
Root analytic conductor: |
1.47374 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ272(205,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 272, ( :1/2), −0.921+0.387i)
|
Particular Values
L(1) |
≈ |
0.0153607−0.0761705i |
L(21) |
≈ |
0.0153607−0.0761705i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.41−0.00186i)T |
| 17 | 1+T |
good | 3 | 1+(0.274+0.274i)T+3iT2 |
| 5 | 1+(2.33−2.33i)T−5iT2 |
| 7 | 1−0.445iT−7T2 |
| 11 | 1+(0.541−0.541i)T−11iT2 |
| 13 | 1+(3.22+3.22i)T+13iT2 |
| 19 | 1+(5.38+5.38i)T+19iT2 |
| 23 | 1−7.35iT−23T2 |
| 29 | 1+(4.91+4.91i)T+29iT2 |
| 31 | 1+4.01T+31T2 |
| 37 | 1+(2.25−2.25i)T−37iT2 |
| 41 | 1+8.61iT−41T2 |
| 43 | 1+(2.61−2.61i)T−43iT2 |
| 47 | 1−0.997T+47T2 |
| 53 | 1+(−2.69+2.69i)T−53iT2 |
| 59 | 1+(8.74−8.74i)T−59iT2 |
| 61 | 1+(−7.55−7.55i)T+61iT2 |
| 67 | 1+(−9.29−9.29i)T+67iT2 |
| 71 | 1−2.68iT−71T2 |
| 73 | 1+0.113iT−73T2 |
| 79 | 1−5.48T+79T2 |
| 83 | 1+(4.04+4.04i)T+83iT2 |
| 89 | 1+12.6iT−89T2 |
| 97 | 1+14.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38958819193385792596498468933, −10.60931723160311279301585374933, −9.615674645682939325007375518855, −8.586194207767826482321417477616, −7.36686082414033697954587902901, −7.05399553495596153440946594795, −5.74613058997108759041601582552, −3.73778277275632912080502894884, −2.55240867109139727274775062741, −0.07742693805914477655838073514,
2.01849518020895850763191125338, 4.03870989355796850754557465009, 5.14288923709050637717257087586, 6.69162577652936359591783991086, 7.82227039607648332916808033106, 8.391049434796618839839993763398, 9.325687833593365296021937417832, 10.51702423278383171109051843625, 11.16302555986734476910229059812, 12.26066424095010372414034046325