L(s) = 1 | + (0.591 − 1.28i)2-s + (0.915 + 0.915i)3-s + (−1.30 − 1.51i)4-s + (2.93 − 2.93i)5-s + (1.71 − 0.634i)6-s + 1.91i·7-s + (−2.72 + 0.771i)8-s − 1.32i·9-s + (−2.03 − 5.51i)10-s + (−2.96 + 2.96i)11-s + (0.201 − 2.58i)12-s + (1.16 + 1.16i)13-s + (2.45 + 1.13i)14-s + 5.37·15-s + (−0.619 + 3.95i)16-s + 17-s + ⋯ |
L(s) = 1 | + (0.418 − 0.908i)2-s + (0.528 + 0.528i)3-s + (−0.650 − 0.759i)4-s + (1.31 − 1.31i)5-s + (0.701 − 0.259i)6-s + 0.723i·7-s + (−0.962 + 0.272i)8-s − 0.441i·9-s + (−0.643 − 1.74i)10-s + (−0.894 + 0.894i)11-s + (0.0580 − 0.745i)12-s + (0.321 + 0.321i)13-s + (0.657 + 0.302i)14-s + 1.38·15-s + (−0.154 + 0.987i)16-s + 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.235 + 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.235 + 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.52651 - 1.20131i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.52651 - 1.20131i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.591 + 1.28i)T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 + (-0.915 - 0.915i)T + 3iT^{2} \) |
| 5 | \( 1 + (-2.93 + 2.93i)T - 5iT^{2} \) |
| 7 | \( 1 - 1.91iT - 7T^{2} \) |
| 11 | \( 1 + (2.96 - 2.96i)T - 11iT^{2} \) |
| 13 | \( 1 + (-1.16 - 1.16i)T + 13iT^{2} \) |
| 19 | \( 1 + (1.64 + 1.64i)T + 19iT^{2} \) |
| 23 | \( 1 - 0.425iT - 23T^{2} \) |
| 29 | \( 1 + (-4.17 - 4.17i)T + 29iT^{2} \) |
| 31 | \( 1 + 4.08T + 31T^{2} \) |
| 37 | \( 1 + (7.58 - 7.58i)T - 37iT^{2} \) |
| 41 | \( 1 - 11.1iT - 41T^{2} \) |
| 43 | \( 1 + (-4.70 + 4.70i)T - 43iT^{2} \) |
| 47 | \( 1 + 1.47T + 47T^{2} \) |
| 53 | \( 1 + (1.05 - 1.05i)T - 53iT^{2} \) |
| 59 | \( 1 + (6.30 - 6.30i)T - 59iT^{2} \) |
| 61 | \( 1 + (6.38 + 6.38i)T + 61iT^{2} \) |
| 67 | \( 1 + (3.95 + 3.95i)T + 67iT^{2} \) |
| 71 | \( 1 - 7.48iT - 71T^{2} \) |
| 73 | \( 1 + 0.137iT - 73T^{2} \) |
| 79 | \( 1 - 15.5T + 79T^{2} \) |
| 83 | \( 1 + (9.36 + 9.36i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.78iT - 89T^{2} \) |
| 97 | \( 1 - 1.68T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.07179637516697618454660965825, −10.50755738080881482107982012550, −9.765115394238596899831792856472, −9.098438697875161510389873565639, −8.513656655871312153503822869288, −6.26592179240806975059960045285, −5.21153173583690424277309430698, −4.52423594139995495860399367821, −2.85769243175883387662621961928, −1.64906091974799633536123633413,
2.41642604888447670163514799311, 3.50136724210261868124818845508, 5.38253798240969640712972996516, 6.18303671762093272873386909491, 7.19935457864013780510132696302, 7.87687663190405069411571331282, 9.012475511911690570924249019470, 10.37223938221981077019423101694, 10.82749002217119166598941826999, 12.63851991621306202024319815616