L(s) = 1 | + (0.591 − 1.28i)2-s + (0.915 + 0.915i)3-s + (−1.30 − 1.51i)4-s + (2.93 − 2.93i)5-s + (1.71 − 0.634i)6-s + 1.91i·7-s + (−2.72 + 0.771i)8-s − 1.32i·9-s + (−2.03 − 5.51i)10-s + (−2.96 + 2.96i)11-s + (0.201 − 2.58i)12-s + (1.16 + 1.16i)13-s + (2.45 + 1.13i)14-s + 5.37·15-s + (−0.619 + 3.95i)16-s + 17-s + ⋯ |
L(s) = 1 | + (0.418 − 0.908i)2-s + (0.528 + 0.528i)3-s + (−0.650 − 0.759i)4-s + (1.31 − 1.31i)5-s + (0.701 − 0.259i)6-s + 0.723i·7-s + (−0.962 + 0.272i)8-s − 0.441i·9-s + (−0.643 − 1.74i)10-s + (−0.894 + 0.894i)11-s + (0.0580 − 0.745i)12-s + (0.321 + 0.321i)13-s + (0.657 + 0.302i)14-s + 1.38·15-s + (−0.154 + 0.987i)16-s + 0.242·17-s + ⋯ |
Λ(s)=(=(272s/2ΓC(s)L(s)(0.235+0.971i)Λ(2−s)
Λ(s)=(=(272s/2ΓC(s+1/2)L(s)(0.235+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
272
= 24⋅17
|
Sign: |
0.235+0.971i
|
Analytic conductor: |
2.17193 |
Root analytic conductor: |
1.47374 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ272(205,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 272, ( :1/2), 0.235+0.971i)
|
Particular Values
L(1) |
≈ |
1.52651−1.20131i |
L(21) |
≈ |
1.52651−1.20131i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.591+1.28i)T |
| 17 | 1−T |
good | 3 | 1+(−0.915−0.915i)T+3iT2 |
| 5 | 1+(−2.93+2.93i)T−5iT2 |
| 7 | 1−1.91iT−7T2 |
| 11 | 1+(2.96−2.96i)T−11iT2 |
| 13 | 1+(−1.16−1.16i)T+13iT2 |
| 19 | 1+(1.64+1.64i)T+19iT2 |
| 23 | 1−0.425iT−23T2 |
| 29 | 1+(−4.17−4.17i)T+29iT2 |
| 31 | 1+4.08T+31T2 |
| 37 | 1+(7.58−7.58i)T−37iT2 |
| 41 | 1−11.1iT−41T2 |
| 43 | 1+(−4.70+4.70i)T−43iT2 |
| 47 | 1+1.47T+47T2 |
| 53 | 1+(1.05−1.05i)T−53iT2 |
| 59 | 1+(6.30−6.30i)T−59iT2 |
| 61 | 1+(6.38+6.38i)T+61iT2 |
| 67 | 1+(3.95+3.95i)T+67iT2 |
| 71 | 1−7.48iT−71T2 |
| 73 | 1+0.137iT−73T2 |
| 79 | 1−15.5T+79T2 |
| 83 | 1+(9.36+9.36i)T+83iT2 |
| 89 | 1+3.78iT−89T2 |
| 97 | 1−1.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.07179637516697618454660965825, −10.50755738080881482107982012550, −9.765115394238596899831792856472, −9.098438697875161510389873565639, −8.513656655871312153503822869288, −6.26592179240806975059960045285, −5.21153173583690424277309430698, −4.52423594139995495860399367821, −2.85769243175883387662621961928, −1.64906091974799633536123633413,
2.41642604888447670163514799311, 3.50136724210261868124818845508, 5.38253798240969640712972996516, 6.18303671762093272873386909491, 7.19935457864013780510132696302, 7.87687663190405069411571331282, 9.012475511911690570924249019470, 10.37223938221981077019423101694, 10.82749002217119166598941826999, 12.63851991621306202024319815616