L(s) = 1 | + (0.321 − 1.37i)2-s + (−2.20 − 2.20i)3-s + (−1.79 − 0.885i)4-s + (2.24 − 2.24i)5-s + (−3.74 + 2.33i)6-s − 3.15i·7-s + (−1.79 + 2.18i)8-s + 6.74i·9-s + (−2.36 − 3.80i)10-s + (2.18 − 2.18i)11-s + (2.00 + 5.91i)12-s + (1.93 + 1.93i)13-s + (−4.34 − 1.01i)14-s − 9.89·15-s + (2.43 + 3.17i)16-s − 17-s + ⋯ |
L(s) = 1 | + (0.227 − 0.973i)2-s + (−1.27 − 1.27i)3-s + (−0.896 − 0.442i)4-s + (1.00 − 1.00i)5-s + (−1.53 + 0.951i)6-s − 1.19i·7-s + (−0.634 + 0.772i)8-s + 2.24i·9-s + (−0.748 − 1.20i)10-s + (0.659 − 0.659i)11-s + (0.578 + 1.70i)12-s + (0.536 + 0.536i)13-s + (−1.16 − 0.270i)14-s − 2.55·15-s + (0.608 + 0.793i)16-s − 0.242·17-s + ⋯ |
Λ(s)=(=(272s/2ΓC(s)L(s)(−0.865−0.500i)Λ(2−s)
Λ(s)=(=(272s/2ΓC(s+1/2)L(s)(−0.865−0.500i)Λ(1−s)
Degree: |
2 |
Conductor: |
272
= 24⋅17
|
Sign: |
−0.865−0.500i
|
Analytic conductor: |
2.17193 |
Root analytic conductor: |
1.47374 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ272(205,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 272, ( :1/2), −0.865−0.500i)
|
Particular Values
L(1) |
≈ |
0.259582+0.967785i |
L(21) |
≈ |
0.259582+0.967785i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.321+1.37i)T |
| 17 | 1+T |
good | 3 | 1+(2.20+2.20i)T+3iT2 |
| 5 | 1+(−2.24+2.24i)T−5iT2 |
| 7 | 1+3.15iT−7T2 |
| 11 | 1+(−2.18+2.18i)T−11iT2 |
| 13 | 1+(−1.93−1.93i)T+13iT2 |
| 19 | 1+(−5.15−5.15i)T+19iT2 |
| 23 | 1−0.195iT−23T2 |
| 29 | 1+(0.528+0.528i)T+29iT2 |
| 31 | 1+6.11T+31T2 |
| 37 | 1+(−1.40+1.40i)T−37iT2 |
| 41 | 1+4.43iT−41T2 |
| 43 | 1+(0.190−0.190i)T−43iT2 |
| 47 | 1−3.42T+47T2 |
| 53 | 1+(−8.10+8.10i)T−53iT2 |
| 59 | 1+(8.44−8.44i)T−59iT2 |
| 61 | 1+(−0.714−0.714i)T+61iT2 |
| 67 | 1+(6.97+6.97i)T+67iT2 |
| 71 | 1−12.1iT−71T2 |
| 73 | 1−9.75iT−73T2 |
| 79 | 1+12.9T+79T2 |
| 83 | 1+(−6.54−6.54i)T+83iT2 |
| 89 | 1−5.65iT−89T2 |
| 97 | 1+18.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50127978091883024946120104169, −10.73694513217635141913551001171, −9.734704704454331918774967624296, −8.601480743413030864785451491856, −7.23345533862900802013767982298, −5.97392123218435831219824644781, −5.41196635385728221687447931613, −4.03196180960064179914404176818, −1.65833379239036168267058544058, −0.955266944501218711267585836350,
3.17383907648099418112129262623, 4.66458404524654967041682103905, 5.63177123324909353926813177622, 6.11952905704649338545572882332, 7.09568395564861925004533403509, 9.073471386877672523887486611005, 9.483859761475350230754371490861, 10.46758861853251442718960487261, 11.45303441457067202391356919966, 12.32575819561799111851511844285