L(s) = 1 | + (−0.205 + 1.39i)2-s + (1.44 + 1.44i)3-s + (−1.91 − 0.574i)4-s + (−1.55 + 1.55i)5-s + (−2.31 + 1.72i)6-s + 2.87i·7-s + (1.19 − 2.56i)8-s + 1.17i·9-s + (−1.85 − 2.49i)10-s + (0.709 − 0.709i)11-s + (−1.93 − 3.59i)12-s + (−1.15 − 1.15i)13-s + (−4.02 − 0.590i)14-s − 4.49·15-s + (3.33 + 2.20i)16-s − 17-s + ⋯ |
L(s) = 1 | + (−0.145 + 0.989i)2-s + (0.834 + 0.834i)3-s + (−0.957 − 0.287i)4-s + (−0.694 + 0.694i)5-s + (−0.946 + 0.704i)6-s + 1.08i·7-s + (0.423 − 0.905i)8-s + 0.392i·9-s + (−0.586 − 0.788i)10-s + (0.213 − 0.213i)11-s + (−0.559 − 1.03i)12-s + (−0.320 − 0.320i)13-s + (−1.07 − 0.157i)14-s − 1.15·15-s + (0.834 + 0.550i)16-s − 0.242·17-s + ⋯ |
Λ(s)=(=(272s/2ΓC(s)L(s)(−0.981−0.189i)Λ(2−s)
Λ(s)=(=(272s/2ΓC(s+1/2)L(s)(−0.981−0.189i)Λ(1−s)
Degree: |
2 |
Conductor: |
272
= 24⋅17
|
Sign: |
−0.981−0.189i
|
Analytic conductor: |
2.17193 |
Root analytic conductor: |
1.47374 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ272(205,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 272, ( :1/2), −0.981−0.189i)
|
Particular Values
L(1) |
≈ |
0.111385+1.16726i |
L(21) |
≈ |
0.111385+1.16726i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.205−1.39i)T |
| 17 | 1+T |
good | 3 | 1+(−1.44−1.44i)T+3iT2 |
| 5 | 1+(1.55−1.55i)T−5iT2 |
| 7 | 1−2.87iT−7T2 |
| 11 | 1+(−0.709+0.709i)T−11iT2 |
| 13 | 1+(1.15+1.15i)T+13iT2 |
| 19 | 1+(−0.443−0.443i)T+19iT2 |
| 23 | 1−3.88iT−23T2 |
| 29 | 1+(−1.60−1.60i)T+29iT2 |
| 31 | 1−3.14T+31T2 |
| 37 | 1+(−1.86+1.86i)T−37iT2 |
| 41 | 1−10.3iT−41T2 |
| 43 | 1+(−8.83+8.83i)T−43iT2 |
| 47 | 1+8.60T+47T2 |
| 53 | 1+(3.15−3.15i)T−53iT2 |
| 59 | 1+(−7.60+7.60i)T−59iT2 |
| 61 | 1+(−7.69−7.69i)T+61iT2 |
| 67 | 1+(−2.54−2.54i)T+67iT2 |
| 71 | 1−2.42iT−71T2 |
| 73 | 1+11.8iT−73T2 |
| 79 | 1−13.0T+79T2 |
| 83 | 1+(12.1+12.1i)T+83iT2 |
| 89 | 1−13.5iT−89T2 |
| 97 | 1+2.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.41127128489345549242094509448, −11.30603260466159877270443779722, −10.07138583303634431764358421702, −9.286281417927296554766090472178, −8.513866446784124305036070667381, −7.66346253751685234559883981757, −6.48838371465730216729438936726, −5.29222841786532611397142437418, −4.01758557240042403262845103661, −2.97640871997520696575982379302,
0.935022316026765515711472153870, 2.43780613374890356806691810726, 3.90715692416065188093107104309, 4.74500633100781755173862474039, 6.90281192267614103969503984731, 7.899388018756021339378650306624, 8.475091127865437472120332177778, 9.532582656088283015834160792201, 10.58715834313986812500911113239, 11.60466452572310038205167742214