Properties

Label 2-272-16.13-c1-0-6
Degree 22
Conductor 272272
Sign 0.9810.189i-0.981 - 0.189i
Analytic cond. 2.171932.17193
Root an. cond. 1.473741.47374
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.205 + 1.39i)2-s + (1.44 + 1.44i)3-s + (−1.91 − 0.574i)4-s + (−1.55 + 1.55i)5-s + (−2.31 + 1.72i)6-s + 2.87i·7-s + (1.19 − 2.56i)8-s + 1.17i·9-s + (−1.85 − 2.49i)10-s + (0.709 − 0.709i)11-s + (−1.93 − 3.59i)12-s + (−1.15 − 1.15i)13-s + (−4.02 − 0.590i)14-s − 4.49·15-s + (3.33 + 2.20i)16-s − 17-s + ⋯
L(s)  = 1  + (−0.145 + 0.989i)2-s + (0.834 + 0.834i)3-s + (−0.957 − 0.287i)4-s + (−0.694 + 0.694i)5-s + (−0.946 + 0.704i)6-s + 1.08i·7-s + (0.423 − 0.905i)8-s + 0.392i·9-s + (−0.586 − 0.788i)10-s + (0.213 − 0.213i)11-s + (−0.559 − 1.03i)12-s + (−0.320 − 0.320i)13-s + (−1.07 − 0.157i)14-s − 1.15·15-s + (0.834 + 0.550i)16-s − 0.242·17-s + ⋯

Functional equation

Λ(s)=(272s/2ΓC(s)L(s)=((0.9810.189i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 - 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(272s/2ΓC(s+1/2)L(s)=((0.9810.189i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 - 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 272272    =    24172^{4} \cdot 17
Sign: 0.9810.189i-0.981 - 0.189i
Analytic conductor: 2.171932.17193
Root analytic conductor: 1.473741.47374
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ272(205,)\chi_{272} (205, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 272, ( :1/2), 0.9810.189i)(2,\ 272,\ (\ :1/2),\ -0.981 - 0.189i)

Particular Values

L(1)L(1) \approx 0.111385+1.16726i0.111385 + 1.16726i
L(12)L(\frac12) \approx 0.111385+1.16726i0.111385 + 1.16726i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.2051.39i)T 1 + (0.205 - 1.39i)T
17 1+T 1 + T
good3 1+(1.441.44i)T+3iT2 1 + (-1.44 - 1.44i)T + 3iT^{2}
5 1+(1.551.55i)T5iT2 1 + (1.55 - 1.55i)T - 5iT^{2}
7 12.87iT7T2 1 - 2.87iT - 7T^{2}
11 1+(0.709+0.709i)T11iT2 1 + (-0.709 + 0.709i)T - 11iT^{2}
13 1+(1.15+1.15i)T+13iT2 1 + (1.15 + 1.15i)T + 13iT^{2}
19 1+(0.4430.443i)T+19iT2 1 + (-0.443 - 0.443i)T + 19iT^{2}
23 13.88iT23T2 1 - 3.88iT - 23T^{2}
29 1+(1.601.60i)T+29iT2 1 + (-1.60 - 1.60i)T + 29iT^{2}
31 13.14T+31T2 1 - 3.14T + 31T^{2}
37 1+(1.86+1.86i)T37iT2 1 + (-1.86 + 1.86i)T - 37iT^{2}
41 110.3iT41T2 1 - 10.3iT - 41T^{2}
43 1+(8.83+8.83i)T43iT2 1 + (-8.83 + 8.83i)T - 43iT^{2}
47 1+8.60T+47T2 1 + 8.60T + 47T^{2}
53 1+(3.153.15i)T53iT2 1 + (3.15 - 3.15i)T - 53iT^{2}
59 1+(7.60+7.60i)T59iT2 1 + (-7.60 + 7.60i)T - 59iT^{2}
61 1+(7.697.69i)T+61iT2 1 + (-7.69 - 7.69i)T + 61iT^{2}
67 1+(2.542.54i)T+67iT2 1 + (-2.54 - 2.54i)T + 67iT^{2}
71 12.42iT71T2 1 - 2.42iT - 71T^{2}
73 1+11.8iT73T2 1 + 11.8iT - 73T^{2}
79 113.0T+79T2 1 - 13.0T + 79T^{2}
83 1+(12.1+12.1i)T+83iT2 1 + (12.1 + 12.1i)T + 83iT^{2}
89 113.5iT89T2 1 - 13.5iT - 89T^{2}
97 1+2.79T+97T2 1 + 2.79T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.41127128489345549242094509448, −11.30603260466159877270443779722, −10.07138583303634431764358421702, −9.286281417927296554766090472178, −8.513866446784124305036070667381, −7.66346253751685234559883981757, −6.48838371465730216729438936726, −5.29222841786532611397142437418, −4.01758557240042403262845103661, −2.97640871997520696575982379302, 0.935022316026765515711472153870, 2.43780613374890356806691810726, 3.90715692416065188093107104309, 4.74500633100781755173862474039, 6.90281192267614103969503984731, 7.899388018756021339378650306624, 8.475091127865437472120332177778, 9.532582656088283015834160792201, 10.58715834313986812500911113239, 11.60466452572310038205167742214

Graph of the ZZ-function along the critical line