L(s) = 1 | + (1.18 + 2.05i)2-s + (0.5 + 0.866i)3-s + (−1.82 + 3.16i)4-s − 4.02·5-s + (−1.18 + 2.05i)6-s + (0.5 − 0.866i)7-s − 3.92·8-s + (−0.499 + 0.866i)9-s + (−4.78 − 8.29i)10-s + (1.63 + 2.83i)11-s − 3.65·12-s + (0.910 + 3.48i)13-s + 2.37·14-s + (−2.01 − 3.48i)15-s + (−1.01 − 1.75i)16-s + (0.188 − 0.326i)17-s + ⋯ |
L(s) = 1 | + (0.840 + 1.45i)2-s + (0.288 + 0.499i)3-s + (−0.912 + 1.58i)4-s − 1.80·5-s + (−0.485 + 0.840i)6-s + (0.188 − 0.327i)7-s − 1.38·8-s + (−0.166 + 0.288i)9-s + (−1.51 − 2.62i)10-s + (0.493 + 0.854i)11-s − 1.05·12-s + (0.252 + 0.967i)13-s + 0.635·14-s + (−0.520 − 0.900i)15-s + (−0.253 − 0.439i)16-s + (0.0457 − 0.0792i)17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
−1
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), −1)
|
Particular Values
L(1) |
≈ |
−1.52306i |
L(21) |
≈ |
−1.52306i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(−0.5+0.866i)T |
| 13 | 1+(−0.910−3.48i)T |
good | 2 | 1+(−1.18−2.05i)T+(−1+1.73i)T2 |
| 5 | 1+4.02T+5T2 |
| 11 | 1+(−1.63−2.83i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.188+0.326i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.77+3.07i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.948+1.64i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.33−7.51i)T+(−14.5+25.1i)T2 |
| 31 | 1−6.33T+31T2 |
| 37 | 1+(2.01+3.48i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.75+6.50i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.32+7.49i)T+(−21.5−37.2i)T2 |
| 47 | 1+12.1T+47T2 |
| 53 | 1−7.75T+53T2 |
| 59 | 1+(−1.05+1.82i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.87−6.71i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.79+4.83i)T+(−33.5+58.0i)T2 |
| 71 | 1+(1.99−3.45i)T+(−35.5−61.4i)T2 |
| 73 | 1−7.50T+73T2 |
| 79 | 1+1.16T+79T2 |
| 83 | 1−15.1T+83T2 |
| 89 | 1+(3.17+5.50i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.48−4.30i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37819790407729118517491767116, −11.77110940733718819290160107377, −10.60700279128365456105543936501, −8.984997697948884105747703920331, −8.260934037346162988440165959347, −7.23151300441027167955305607904, −6.78588432394752831969086912991, −4.93980089316024543068307165808, −4.32797491109275325481141649353, −3.52235045553583954417208475145,
0.970504142698149759165400378650, 2.96596235019041213893525120197, 3.64462008834228693150872169353, 4.74678904748333587912981009639, 6.18865687689488090115080754141, 7.87757728860861122416237447691, 8.357545273876155913220685641963, 9.872929748328341556755349805056, 11.00470887568194829066776455476, 11.76544702288331593818059683636