L(s) = 1 | + 0.618·2-s − 0.381·3-s − 1.61·4-s − 0.236·6-s − 3.85·7-s − 2.23·8-s − 2.85·9-s + 11-s + 0.618·12-s − 1.76·13-s − 2.38·14-s + 1.85·16-s − 1.61·17-s − 1.76·18-s + 6.70·19-s + 1.47·21-s + 0.618·22-s − 7.09·23-s + 0.854·24-s − 1.09·26-s + 2.23·27-s + 6.23·28-s − 3.61·29-s − 3·31-s + 5.61·32-s − 0.381·33-s − 1.00·34-s + ⋯ |
L(s) = 1 | + 0.437·2-s − 0.220·3-s − 0.809·4-s − 0.0963·6-s − 1.45·7-s − 0.790·8-s − 0.951·9-s + 0.301·11-s + 0.178·12-s − 0.489·13-s − 0.636·14-s + 0.463·16-s − 0.392·17-s − 0.415·18-s + 1.53·19-s + 0.321·21-s + 0.131·22-s − 1.47·23-s + 0.174·24-s − 0.213·26-s + 0.430·27-s + 1.17·28-s − 0.671·29-s − 0.538·31-s + 0.993·32-s − 0.0664·33-s − 0.171·34-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1−T |
good | 2 | 1−0.618T+2T2 |
| 3 | 1+0.381T+3T2 |
| 7 | 1+3.85T+7T2 |
| 13 | 1+1.76T+13T2 |
| 17 | 1+1.61T+17T2 |
| 19 | 1−6.70T+19T2 |
| 23 | 1+7.09T+23T2 |
| 29 | 1+3.61T+29T2 |
| 31 | 1+3T+31T2 |
| 37 | 1+5.76T+37T2 |
| 41 | 1+3T+41T2 |
| 43 | 1−6T+43T2 |
| 47 | 1−5.94T+47T2 |
| 53 | 1−6.32T+53T2 |
| 59 | 1−9.47T+59T2 |
| 61 | 1+11.0T+61T2 |
| 67 | 1+8T+67T2 |
| 71 | 1+14.1T+71T2 |
| 73 | 1+12.6T+73T2 |
| 79 | 1+0.854T+79T2 |
| 83 | 1−16.8T+83T2 |
| 89 | 1+18.0T+89T2 |
| 97 | 1−0.618T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.80555197965088696893994809316, −10.31706666720708864964347944408, −9.463444875934616351750339132614, −8.802682250912539586751346681205, −7.38623110876223889945537992955, −6.09098378861924905440480640353, −5.42670884232244898599868521037, −3.95430665306330740889269912878, −2.96886712006022722229163981006, 0,
2.96886712006022722229163981006, 3.95430665306330740889269912878, 5.42670884232244898599868521037, 6.09098378861924905440480640353, 7.38623110876223889945537992955, 8.802682250912539586751346681205, 9.463444875934616351750339132614, 10.31706666720708864964347944408, 11.80555197965088696893994809316