L(s) = 1 | + 2.30·2-s − 1.30·3-s + 3.30·4-s − 3·6-s + 4.30·7-s + 3.00·8-s − 1.30·9-s − 11-s − 4.30·12-s + 5·13-s + 9.90·14-s + 0.302·16-s − 3.90·17-s − 3.00·18-s − 19-s − 5.60·21-s − 2.30·22-s − 3.69·23-s − 3.90·24-s + 11.5·26-s + 5.60·27-s + 14.2·28-s − 9.90·29-s − 4.21·31-s − 5.30·32-s + 1.30·33-s − 9·34-s + ⋯ |
L(s) = 1 | + 1.62·2-s − 0.752·3-s + 1.65·4-s − 1.22·6-s + 1.62·7-s + 1.06·8-s − 0.434·9-s − 0.301·11-s − 1.24·12-s + 1.38·13-s + 2.64·14-s + 0.0756·16-s − 0.947·17-s − 0.707·18-s − 0.229·19-s − 1.22·21-s − 0.490·22-s − 0.770·23-s − 0.797·24-s + 2.25·26-s + 1.07·27-s + 2.68·28-s − 1.83·29-s − 0.756·31-s − 0.937·32-s + 0.226·33-s − 1.54·34-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.543835146 |
L(21) |
≈ |
2.543835146 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+T |
good | 2 | 1−2.30T+2T2 |
| 3 | 1+1.30T+3T2 |
| 7 | 1−4.30T+7T2 |
| 13 | 1−5T+13T2 |
| 17 | 1+3.90T+17T2 |
| 19 | 1+T+19T2 |
| 23 | 1+3.69T+23T2 |
| 29 | 1+9.90T+29T2 |
| 31 | 1+4.21T+31T2 |
| 37 | 1−9.60T+37T2 |
| 41 | 1−1.60T+41T2 |
| 43 | 1+7.21T+43T2 |
| 47 | 1+3T+47T2 |
| 53 | 1−2.30T+53T2 |
| 59 | 1−0.211T+59T2 |
| 61 | 1−2.90T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1−4.60T+71T2 |
| 73 | 1−2.90T+73T2 |
| 79 | 1+0.0916T+79T2 |
| 83 | 1−14.5T+83T2 |
| 89 | 1−5.30T+89T2 |
| 97 | 1−11.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.75264289167998397713824240051, −11.24933123400379278318604389692, −10.83460400463024479003249245451, −8.843291587354579709770843927933, −7.78167051977930937994868351532, −6.36993791897891590419911293865, −5.62137348147238836438259296365, −4.80175039695978728299343645479, −3.79894828953799276588994147306, −2.04290806640930588735681357089,
2.04290806640930588735681357089, 3.79894828953799276588994147306, 4.80175039695978728299343645479, 5.62137348147238836438259296365, 6.36993791897891590419911293865, 7.78167051977930937994868351532, 8.843291587354579709770843927933, 10.83460400463024479003249245451, 11.24933123400379278318604389692, 11.75264289167998397713824240051