Properties

Label 2-275-1.1-c3-0-16
Degree $2$
Conductor $275$
Sign $-1$
Analytic cond. $16.2255$
Root an. cond. $4.02809$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.78·2-s − 5.99·3-s + 14.8·4-s + 28.6·6-s − 11.9·7-s − 32.7·8-s + 8.91·9-s − 11·11-s − 89.0·12-s − 22.4·13-s + 57.1·14-s + 37.8·16-s + 131.·17-s − 42.5·18-s + 99.0·19-s + 71.6·21-s + 52.5·22-s + 0.206·23-s + 196.·24-s + 107.·26-s + 108.·27-s − 177.·28-s − 163.·29-s + 217.·31-s + 81.3·32-s + 65.9·33-s − 630.·34-s + ⋯
L(s)  = 1  − 1.69·2-s − 1.15·3-s + 1.85·4-s + 1.94·6-s − 0.645·7-s − 1.44·8-s + 0.330·9-s − 0.301·11-s − 2.14·12-s − 0.478·13-s + 1.09·14-s + 0.591·16-s + 1.88·17-s − 0.557·18-s + 1.19·19-s + 0.745·21-s + 0.509·22-s + 0.00187·23-s + 1.67·24-s + 0.808·26-s + 0.772·27-s − 1.19·28-s − 1.04·29-s + 1.25·31-s + 0.449·32-s + 0.347·33-s − 3.18·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(16.2255\)
Root analytic conductor: \(4.02809\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 275,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + 11T \)
good2 \( 1 + 4.78T + 8T^{2} \)
3 \( 1 + 5.99T + 27T^{2} \)
7 \( 1 + 11.9T + 343T^{2} \)
13 \( 1 + 22.4T + 2.19e3T^{2} \)
17 \( 1 - 131.T + 4.91e3T^{2} \)
19 \( 1 - 99.0T + 6.85e3T^{2} \)
23 \( 1 - 0.206T + 1.21e4T^{2} \)
29 \( 1 + 163.T + 2.43e4T^{2} \)
31 \( 1 - 217.T + 2.97e4T^{2} \)
37 \( 1 + 17.8T + 5.06e4T^{2} \)
41 \( 1 + 32.3T + 6.89e4T^{2} \)
43 \( 1 + 490.T + 7.95e4T^{2} \)
47 \( 1 - 518.T + 1.03e5T^{2} \)
53 \( 1 + 110.T + 1.48e5T^{2} \)
59 \( 1 - 242.T + 2.05e5T^{2} \)
61 \( 1 + 713.T + 2.26e5T^{2} \)
67 \( 1 + 571.T + 3.00e5T^{2} \)
71 \( 1 + 113.T + 3.57e5T^{2} \)
73 \( 1 + 767.T + 3.89e5T^{2} \)
79 \( 1 - 470.T + 4.93e5T^{2} \)
83 \( 1 - 1.15e3T + 5.71e5T^{2} \)
89 \( 1 - 719.T + 7.04e5T^{2} \)
97 \( 1 - 510.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66223381062421851381717165748, −10.02873684117439981694233221342, −9.338317822406418731122198895795, −8.019774517873546920009177244123, −7.24917997419879368221081199437, −6.18161772006151311220534969411, −5.21150253514238299909884249974, −3.03899168649630070547656221715, −1.16079970326181627380577536905, 0, 1.16079970326181627380577536905, 3.03899168649630070547656221715, 5.21150253514238299909884249974, 6.18161772006151311220534969411, 7.24917997419879368221081199437, 8.019774517873546920009177244123, 9.338317822406418731122198895795, 10.02873684117439981694233221342, 10.66223381062421851381717165748

Graph of the $Z$-function along the critical line