L(s) = 1 | − 4.78·2-s − 5.99·3-s + 14.8·4-s + 28.6·6-s − 11.9·7-s − 32.7·8-s + 8.91·9-s − 11·11-s − 89.0·12-s − 22.4·13-s + 57.1·14-s + 37.8·16-s + 131.·17-s − 42.5·18-s + 99.0·19-s + 71.6·21-s + 52.5·22-s + 0.206·23-s + 196.·24-s + 107.·26-s + 108.·27-s − 177.·28-s − 163.·29-s + 217.·31-s + 81.3·32-s + 65.9·33-s − 630.·34-s + ⋯ |
L(s) = 1 | − 1.69·2-s − 1.15·3-s + 1.85·4-s + 1.94·6-s − 0.645·7-s − 1.44·8-s + 0.330·9-s − 0.301·11-s − 2.14·12-s − 0.478·13-s + 1.09·14-s + 0.591·16-s + 1.88·17-s − 0.557·18-s + 1.19·19-s + 0.745·21-s + 0.509·22-s + 0.00187·23-s + 1.67·24-s + 0.808·26-s + 0.772·27-s − 1.19·28-s − 1.04·29-s + 1.25·31-s + 0.449·32-s + 0.347·33-s − 3.18·34-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+11T |
good | 2 | 1+4.78T+8T2 |
| 3 | 1+5.99T+27T2 |
| 7 | 1+11.9T+343T2 |
| 13 | 1+22.4T+2.19e3T2 |
| 17 | 1−131.T+4.91e3T2 |
| 19 | 1−99.0T+6.85e3T2 |
| 23 | 1−0.206T+1.21e4T2 |
| 29 | 1+163.T+2.43e4T2 |
| 31 | 1−217.T+2.97e4T2 |
| 37 | 1+17.8T+5.06e4T2 |
| 41 | 1+32.3T+6.89e4T2 |
| 43 | 1+490.T+7.95e4T2 |
| 47 | 1−518.T+1.03e5T2 |
| 53 | 1+110.T+1.48e5T2 |
| 59 | 1−242.T+2.05e5T2 |
| 61 | 1+713.T+2.26e5T2 |
| 67 | 1+571.T+3.00e5T2 |
| 71 | 1+113.T+3.57e5T2 |
| 73 | 1+767.T+3.89e5T2 |
| 79 | 1−470.T+4.93e5T2 |
| 83 | 1−1.15e3T+5.71e5T2 |
| 89 | 1−719.T+7.04e5T2 |
| 97 | 1−510.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66223381062421851381717165748, −10.02873684117439981694233221342, −9.338317822406418731122198895795, −8.019774517873546920009177244123, −7.24917997419879368221081199437, −6.18161772006151311220534969411, −5.21150253514238299909884249974, −3.03899168649630070547656221715, −1.16079970326181627380577536905, 0,
1.16079970326181627380577536905, 3.03899168649630070547656221715, 5.21150253514238299909884249974, 6.18161772006151311220534969411, 7.24917997419879368221081199437, 8.019774517873546920009177244123, 9.338317822406418731122198895795, 10.02873684117439981694233221342, 10.66223381062421851381717165748