Properties

Label 2-275-1.1-c3-0-8
Degree $2$
Conductor $275$
Sign $1$
Analytic cond. $16.2255$
Root an. cond. $4.02809$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.89·2-s − 8.92·3-s + 15.9·4-s + 43.6·6-s + 17.6·7-s − 39.0·8-s + 52.6·9-s + 11·11-s − 142.·12-s + 43.3·13-s − 86.4·14-s + 63.2·16-s + 53.1·17-s − 257.·18-s − 75.6·19-s − 157.·21-s − 53.8·22-s − 181.·23-s + 348.·24-s − 212.·26-s − 228.·27-s + 282.·28-s − 23.8·29-s + 173.·31-s + 2.59·32-s − 98.1·33-s − 260.·34-s + ⋯
L(s)  = 1  − 1.73·2-s − 1.71·3-s + 1.99·4-s + 2.97·6-s + 0.953·7-s − 1.72·8-s + 1.94·9-s + 0.301·11-s − 3.42·12-s + 0.924·13-s − 1.65·14-s + 0.987·16-s + 0.758·17-s − 3.37·18-s − 0.913·19-s − 1.63·21-s − 0.521·22-s − 1.64·23-s + 2.96·24-s − 1.59·26-s − 1.63·27-s + 1.90·28-s − 0.153·29-s + 1.00·31-s + 0.0143·32-s − 0.517·33-s − 1.31·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(16.2255\)
Root analytic conductor: \(4.02809\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4566374519\)
\(L(\frac12)\) \(\approx\) \(0.4566374519\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - 11T \)
good2 \( 1 + 4.89T + 8T^{2} \)
3 \( 1 + 8.92T + 27T^{2} \)
7 \( 1 - 17.6T + 343T^{2} \)
13 \( 1 - 43.3T + 2.19e3T^{2} \)
17 \( 1 - 53.1T + 4.91e3T^{2} \)
19 \( 1 + 75.6T + 6.85e3T^{2} \)
23 \( 1 + 181.T + 1.21e4T^{2} \)
29 \( 1 + 23.8T + 2.43e4T^{2} \)
31 \( 1 - 173.T + 2.97e4T^{2} \)
37 \( 1 - 239.T + 5.06e4T^{2} \)
41 \( 1 + 56.9T + 6.89e4T^{2} \)
43 \( 1 - 334.T + 7.95e4T^{2} \)
47 \( 1 + 381.T + 1.03e5T^{2} \)
53 \( 1 + 187.T + 1.48e5T^{2} \)
59 \( 1 - 369.T + 2.05e5T^{2} \)
61 \( 1 - 361.T + 2.26e5T^{2} \)
67 \( 1 - 267.T + 3.00e5T^{2} \)
71 \( 1 - 94.9T + 3.57e5T^{2} \)
73 \( 1 + 429.T + 3.89e5T^{2} \)
79 \( 1 + 230.T + 4.93e5T^{2} \)
83 \( 1 + 1.31e3T + 5.71e5T^{2} \)
89 \( 1 - 272.T + 7.04e5T^{2} \)
97 \( 1 - 100.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41175190214076318652996487190, −10.45836313072359570918933452185, −9.854981104525944265769995063058, −8.487858840218890432582919125641, −7.73302278076985291278529148830, −6.52864226420140714098746122902, −5.84199059987235508841036261076, −4.38166770879649062919849233139, −1.74067982748143129091184094433, −0.70842764654648443474504148642, 0.70842764654648443474504148642, 1.74067982748143129091184094433, 4.38166770879649062919849233139, 5.84199059987235508841036261076, 6.52864226420140714098746122902, 7.73302278076985291278529148830, 8.487858840218890432582919125641, 9.854981104525944265769995063058, 10.45836313072359570918933452185, 11.41175190214076318652996487190

Graph of the $Z$-function along the critical line