L(s) = 1 | − 4.89·2-s − 8.92·3-s + 15.9·4-s + 43.6·6-s + 17.6·7-s − 39.0·8-s + 52.6·9-s + 11·11-s − 142.·12-s + 43.3·13-s − 86.4·14-s + 63.2·16-s + 53.1·17-s − 257.·18-s − 75.6·19-s − 157.·21-s − 53.8·22-s − 181.·23-s + 348.·24-s − 212.·26-s − 228.·27-s + 282.·28-s − 23.8·29-s + 173.·31-s + 2.59·32-s − 98.1·33-s − 260.·34-s + ⋯ |
L(s) = 1 | − 1.73·2-s − 1.71·3-s + 1.99·4-s + 2.97·6-s + 0.953·7-s − 1.72·8-s + 1.94·9-s + 0.301·11-s − 3.42·12-s + 0.924·13-s − 1.65·14-s + 0.987·16-s + 0.758·17-s − 3.37·18-s − 0.913·19-s − 1.63·21-s − 0.521·22-s − 1.64·23-s + 2.96·24-s − 1.59·26-s − 1.63·27-s + 1.90·28-s − 0.153·29-s + 1.00·31-s + 0.0143·32-s − 0.517·33-s − 1.31·34-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.4566374519 |
L(21) |
≈ |
0.4566374519 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1−11T |
good | 2 | 1+4.89T+8T2 |
| 3 | 1+8.92T+27T2 |
| 7 | 1−17.6T+343T2 |
| 13 | 1−43.3T+2.19e3T2 |
| 17 | 1−53.1T+4.91e3T2 |
| 19 | 1+75.6T+6.85e3T2 |
| 23 | 1+181.T+1.21e4T2 |
| 29 | 1+23.8T+2.43e4T2 |
| 31 | 1−173.T+2.97e4T2 |
| 37 | 1−239.T+5.06e4T2 |
| 41 | 1+56.9T+6.89e4T2 |
| 43 | 1−334.T+7.95e4T2 |
| 47 | 1+381.T+1.03e5T2 |
| 53 | 1+187.T+1.48e5T2 |
| 59 | 1−369.T+2.05e5T2 |
| 61 | 1−361.T+2.26e5T2 |
| 67 | 1−267.T+3.00e5T2 |
| 71 | 1−94.9T+3.57e5T2 |
| 73 | 1+429.T+3.89e5T2 |
| 79 | 1+230.T+4.93e5T2 |
| 83 | 1+1.31e3T+5.71e5T2 |
| 89 | 1−272.T+7.04e5T2 |
| 97 | 1−100.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41175190214076318652996487190, −10.45836313072359570918933452185, −9.854981104525944265769995063058, −8.487858840218890432582919125641, −7.73302278076985291278529148830, −6.52864226420140714098746122902, −5.84199059987235508841036261076, −4.38166770879649062919849233139, −1.74067982748143129091184094433, −0.70842764654648443474504148642,
0.70842764654648443474504148642, 1.74067982748143129091184094433, 4.38166770879649062919849233139, 5.84199059987235508841036261076, 6.52864226420140714098746122902, 7.73302278076985291278529148830, 8.487858840218890432582919125641, 9.854981104525944265769995063058, 10.45836313072359570918933452185, 11.41175190214076318652996487190