L(s) = 1 | + (−0.596 + 0.433i)2-s + (0.868 + 2.67i)3-s + (−0.449 + 1.38i)4-s + (−1.67 − 1.21i)6-s + (−0.318 + 0.980i)7-s + (−0.787 − 2.42i)8-s + (−3.96 + 2.88i)9-s + (1.93 + 2.69i)11-s − 4.09·12-s + (2.79 − 2.02i)13-s + (−0.235 − 0.723i)14-s + (−0.834 − 0.606i)16-s + (1.94 + 1.40i)17-s + (1.11 − 3.44i)18-s + (−2.36 − 7.29i)19-s + ⋯ |
L(s) = 1 | + (−0.421 + 0.306i)2-s + (0.501 + 1.54i)3-s + (−0.224 + 0.692i)4-s + (−0.684 − 0.497i)6-s + (−0.120 + 0.370i)7-s + (−0.278 − 0.857i)8-s + (−1.32 + 0.961i)9-s + (0.583 + 0.811i)11-s − 1.18·12-s + (0.773 − 0.562i)13-s + (−0.0628 − 0.193i)14-s + (−0.208 − 0.151i)16-s + (0.470 + 0.341i)17-s + (0.263 − 0.811i)18-s + (−0.543 − 1.67i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.941 - 0.335i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.941 - 0.335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.184054 + 1.06372i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.184054 + 1.06372i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-1.93 - 2.69i)T \) |
good | 2 | \( 1 + (0.596 - 0.433i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.868 - 2.67i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.318 - 0.980i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.79 + 2.02i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.94 - 1.40i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (2.36 + 7.29i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.45T + 23T^{2} \) |
| 29 | \( 1 + (1.83 - 5.66i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.98 + 2.16i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.84 - 5.66i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.21 - 3.74i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 7.64T + 43T^{2} \) |
| 47 | \( 1 + (1.80 + 5.55i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (9.58 - 6.96i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.910 + 2.80i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2.00 + 1.45i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 6.14T + 67T^{2} \) |
| 71 | \( 1 + (1.63 + 1.18i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.255 + 0.785i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-9.77 + 7.09i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.30 - 0.946i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 8.16T + 89T^{2} \) |
| 97 | \( 1 + (-1.97 + 1.43i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29256209987742689583671515435, −11.11483130954298291332237000572, −10.14792791172675280165156760288, −9.246491536242774460199371178760, −8.802126412713698312571194093374, −7.78616205265615217417608876208, −6.43508092021702760568146445487, −4.87341144665704538857633196797, −3.95182034230035503009936128645, −2.94130066996149004232867042177,
0.975830049211209716124609238278, 2.07654363690590482183104590860, 3.79222470031274135295405839594, 5.85716522758775307815197073030, 6.44018370702073265930237664388, 7.77033148578557368954739801480, 8.504240718663721882443289200845, 9.410162570097340852928621992647, 10.56273915047325488227954808302, 11.55608969893853194674985720476