L(s) = 1 | + (−0.596 + 0.433i)2-s + (0.868 + 2.67i)3-s + (−0.449 + 1.38i)4-s + (−1.67 − 1.21i)6-s + (−0.318 + 0.980i)7-s + (−0.787 − 2.42i)8-s + (−3.96 + 2.88i)9-s + (1.93 + 2.69i)11-s − 4.09·12-s + (2.79 − 2.02i)13-s + (−0.235 − 0.723i)14-s + (−0.834 − 0.606i)16-s + (1.94 + 1.40i)17-s + (1.11 − 3.44i)18-s + (−2.36 − 7.29i)19-s + ⋯ |
L(s) = 1 | + (−0.421 + 0.306i)2-s + (0.501 + 1.54i)3-s + (−0.224 + 0.692i)4-s + (−0.684 − 0.497i)6-s + (−0.120 + 0.370i)7-s + (−0.278 − 0.857i)8-s + (−1.32 + 0.961i)9-s + (0.583 + 0.811i)11-s − 1.18·12-s + (0.773 − 0.562i)13-s + (−0.0628 − 0.193i)14-s + (−0.208 − 0.151i)16-s + (0.470 + 0.341i)17-s + (0.263 − 0.811i)18-s + (−0.543 − 1.67i)19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(−0.941−0.335i)Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)(−0.941−0.335i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
−0.941−0.335i
|
Analytic conductor: |
2.19588 |
Root analytic conductor: |
1.48185 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :1/2), −0.941−0.335i)
|
Particular Values
L(1) |
≈ |
0.184054+1.06372i |
L(21) |
≈ |
0.184054+1.06372i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+(−1.93−2.69i)T |
good | 2 | 1+(0.596−0.433i)T+(0.618−1.90i)T2 |
| 3 | 1+(−0.868−2.67i)T+(−2.42+1.76i)T2 |
| 7 | 1+(0.318−0.980i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−2.79+2.02i)T+(4.01−12.3i)T2 |
| 17 | 1+(−1.94−1.40i)T+(5.25+16.1i)T2 |
| 19 | 1+(2.36+7.29i)T+(−15.3+11.1i)T2 |
| 23 | 1+2.45T+23T2 |
| 29 | 1+(1.83−5.66i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−2.98+2.16i)T+(9.57−29.4i)T2 |
| 37 | 1+(1.84−5.66i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.21−3.74i)T+(−33.1+24.0i)T2 |
| 43 | 1−7.64T+43T2 |
| 47 | 1+(1.80+5.55i)T+(−38.0+27.6i)T2 |
| 53 | 1+(9.58−6.96i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.910+2.80i)T+(−47.7−34.6i)T2 |
| 61 | 1+(2.00+1.45i)T+(18.8+58.0i)T2 |
| 67 | 1−6.14T+67T2 |
| 71 | 1+(1.63+1.18i)T+(21.9+67.5i)T2 |
| 73 | 1+(−0.255+0.785i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−9.77+7.09i)T+(24.4−75.1i)T2 |
| 83 | 1+(−1.30−0.946i)T+(25.6+78.9i)T2 |
| 89 | 1−8.16T+89T2 |
| 97 | 1+(−1.97+1.43i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.29256209987742689583671515435, −11.11483130954298291332237000572, −10.14792791172675280165156760288, −9.246491536242774460199371178760, −8.802126412713698312571194093374, −7.78616205265615217417608876208, −6.43508092021702760568146445487, −4.87341144665704538857633196797, −3.95182034230035503009936128645, −2.94130066996149004232867042177,
0.975830049211209716124609238278, 2.07654363690590482183104590860, 3.79222470031274135295405839594, 5.85716522758775307815197073030, 6.44018370702073265930237664388, 7.77033148578557368954739801480, 8.504240718663721882443289200845, 9.410162570097340852928621992647, 10.56273915047325488227954808302, 11.55608969893853194674985720476