L(s) = 1 | + (1.63 + 1.18i)2-s + (−0.809 + 2.49i)3-s + (0.647 + 1.99i)4-s + (−4.29 + 3.11i)6-s + (0.298 + 0.918i)7-s + (−0.0595 + 0.183i)8-s + (−3.12 − 2.27i)9-s + (−3.31 − 0.189i)11-s − 5.49·12-s + (3.66 + 2.65i)13-s + (−0.603 + 1.85i)14-s + (3.07 − 2.23i)16-s + (2.69 − 1.96i)17-s + (−2.41 − 7.44i)18-s + (1.01 − 3.11i)19-s + ⋯ |
L(s) = 1 | + (1.15 + 0.841i)2-s + (−0.467 + 1.43i)3-s + (0.323 + 0.996i)4-s + (−1.75 + 1.27i)6-s + (0.112 + 0.347i)7-s + (−0.0210 + 0.0648i)8-s + (−1.04 − 0.757i)9-s + (−0.998 − 0.0572i)11-s − 1.58·12-s + (1.01 + 0.737i)13-s + (−0.161 + 0.496i)14-s + (0.768 − 0.558i)16-s + (0.654 − 0.475i)17-s + (−0.570 − 1.75i)18-s + (0.232 − 0.715i)19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(−0.788−0.614i)Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)(−0.788−0.614i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
−0.788−0.614i
|
Analytic conductor: |
2.19588 |
Root analytic conductor: |
1.48185 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :1/2), −0.788−0.614i)
|
Particular Values
L(1) |
≈ |
0.632830+1.84204i |
L(21) |
≈ |
0.632830+1.84204i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+(3.31+0.189i)T |
good | 2 | 1+(−1.63−1.18i)T+(0.618+1.90i)T2 |
| 3 | 1+(0.809−2.49i)T+(−2.42−1.76i)T2 |
| 7 | 1+(−0.298−0.918i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−3.66−2.65i)T+(4.01+12.3i)T2 |
| 17 | 1+(−2.69+1.96i)T+(5.25−16.1i)T2 |
| 19 | 1+(−1.01+3.11i)T+(−15.3−11.1i)T2 |
| 23 | 1+3.36T+23T2 |
| 29 | 1+(−1.51−4.67i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−0.338−0.245i)T+(9.57+29.4i)T2 |
| 37 | 1+(−1.95−6.02i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−1.78+5.50i)T+(−33.1−24.0i)T2 |
| 43 | 1+2.26T+43T2 |
| 47 | 1+(−1.33+4.11i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−2.15−1.56i)T+(16.3+50.4i)T2 |
| 59 | 1+(3.12+9.62i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−1.99+1.45i)T+(18.8−58.0i)T2 |
| 67 | 1+9.60T+67T2 |
| 71 | 1+(−4.41+3.20i)T+(21.9−67.5i)T2 |
| 73 | 1+(−0.443−1.36i)T+(−59.0+42.9i)T2 |
| 79 | 1+(0.812+0.590i)T+(24.4+75.1i)T2 |
| 83 | 1+(5.98−4.34i)T+(25.6−78.9i)T2 |
| 89 | 1+12.1T+89T2 |
| 97 | 1+(−2.44−1.77i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.30875361669846668096535340780, −11.36233464780402505674761645503, −10.43527801724498256294824911229, −9.542094405218379472810446164616, −8.371999453372257984990945866770, −7.00037311118589519258632123271, −5.80518909109479622328173659078, −5.16801216453007885119829796792, −4.30332517529468013650245817438, −3.23316617100259924738788111020,
1.30367025921154396788616027944, 2.66871231753699609650735386782, 4.03033010007937574155635535886, 5.57560307468741288731835649773, 6.07586336647953913270150676694, 7.64951933533000909828904004373, 8.154016298530555672183671247874, 10.21475241176205291307325549511, 10.93961846685067281413221786610, 11.87408133961494299983365070371