L(s) = 1 | + (1.85 + 1.34i)2-s + (−0.0131 + 0.0403i)3-s + (1.00 + 3.10i)4-s + (−0.0786 + 0.0571i)6-s + (0.352 + 1.08i)7-s + (−0.894 + 2.75i)8-s + (2.42 + 1.76i)9-s + (−1.53 − 2.94i)11-s − 0.138·12-s + (−2.27 − 1.65i)13-s + (−0.807 + 2.48i)14-s + (−0.0933 + 0.0677i)16-s + (−6.25 + 4.54i)17-s + (2.12 + 6.54i)18-s + (1.01 − 3.12i)19-s + ⋯ |
L(s) = 1 | + (1.31 + 0.953i)2-s + (−0.00756 + 0.0232i)3-s + (0.503 + 1.55i)4-s + (−0.0321 + 0.0233i)6-s + (0.133 + 0.409i)7-s + (−0.316 + 0.973i)8-s + (0.808 + 0.587i)9-s + (−0.461 − 0.887i)11-s − 0.0399·12-s + (−0.630 − 0.458i)13-s + (−0.215 + 0.664i)14-s + (−0.0233 + 0.0169i)16-s + (−1.51 + 1.10i)17-s + (0.500 + 1.54i)18-s + (0.232 − 0.716i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.124 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.124 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.83943 + 1.62276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83943 + 1.62276i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (1.53 + 2.94i)T \) |
good | 2 | \( 1 + (-1.85 - 1.34i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.0131 - 0.0403i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.352 - 1.08i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (2.27 + 1.65i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (6.25 - 4.54i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.01 + 3.12i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 5.54T + 23T^{2} \) |
| 29 | \( 1 + (2.15 + 6.62i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.604 - 0.439i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (1.48 + 4.57i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.05 + 6.33i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 0.698T + 43T^{2} \) |
| 47 | \( 1 + (2.67 - 8.22i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (7.08 + 5.15i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.28 - 10.1i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.48 - 5.44i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 6.69T + 67T^{2} \) |
| 71 | \( 1 + (6.03 - 4.38i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.472 - 1.45i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-8.11 - 5.89i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (3.96 - 2.87i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 9.00T + 89T^{2} \) |
| 97 | \( 1 + (-4.79 - 3.48i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.61541440065188737753662094844, −11.33969635246998792048045579129, −10.44630335755928040164508043097, −8.963985905820228941523849062952, −7.86888261191454271084334056052, −7.01236024335791306061062200200, −5.94052540430765995083695298701, −5.03585622215402594020540744992, −4.11736586961360434702180877804, −2.61321796592868141768839537120,
1.75101054373141819522033451894, 3.12472383524083026532441364917, 4.47812846930301418427266269486, 4.93957345454736225745727415280, 6.59134126644160080354931313787, 7.41717436174178072956722585776, 9.200678908570544980359053359496, 10.09151072638226298803465893164, 10.99695856663029243579408346275, 11.85745037998371182613858865707