L(s) = 1 | + (−0.173 − 0.225i)3-s + (−0.974 − 0.226i)4-s + (1.75 − 0.462i)5-s + (0.233 − 0.888i)9-s + (0.118 + 0.258i)12-s + (−0.410 − 0.316i)15-s + (0.897 + 0.441i)16-s + (−1.81 + 0.0519i)20-s + (−0.415 − 0.909i)23-s + (2.01 − 1.13i)25-s + (−0.503 + 0.212i)27-s + (0.949 + 1.38i)31-s + (−0.428 + 0.812i)36-s + (−0.0862 − 1.50i)37-s − 1.67i·45-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.225i)3-s + (−0.974 − 0.226i)4-s + (1.75 − 0.462i)5-s + (0.233 − 0.888i)9-s + (0.118 + 0.258i)12-s + (−0.410 − 0.316i)15-s + (0.897 + 0.441i)16-s + (−1.81 + 0.0519i)20-s + (−0.415 − 0.909i)23-s + (2.01 − 1.13i)25-s + (−0.503 + 0.212i)27-s + (0.949 + 1.38i)31-s + (−0.428 + 0.812i)36-s + (−0.0862 − 1.50i)37-s − 1.67i·45-s + ⋯ |
Λ(s)=(=(2783s/2ΓC(s)L(s)(0.317+0.948i)Λ(1−s)
Λ(s)=(=(2783s/2ΓC(s)L(s)(0.317+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
2783
= 112⋅23
|
Sign: |
0.317+0.948i
|
Analytic conductor: |
1.38889 |
Root analytic conductor: |
1.17851 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2783(753,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2783, ( :0), 0.317+0.948i)
|
Particular Values
L(21) |
≈ |
1.277441455 |
L(21) |
≈ |
1.277441455 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 23 | 1+(0.415+0.909i)T |
good | 2 | 1+(0.974+0.226i)T2 |
| 3 | 1+(0.173+0.225i)T+(−0.254+0.967i)T2 |
| 5 | 1+(−1.75+0.462i)T+(0.870−0.491i)T2 |
| 7 | 1+(0.564−0.825i)T2 |
| 13 | 1+(0.610−0.791i)T2 |
| 17 | 1+(0.466−0.884i)T2 |
| 19 | 1+(0.985−0.170i)T2 |
| 29 | 1+(−0.985−0.170i)T2 |
| 31 | 1+(−0.949−1.38i)T+(−0.362+0.931i)T2 |
| 37 | 1+(0.0862+1.50i)T+(−0.993+0.113i)T2 |
| 41 | 1+(0.993+0.113i)T2 |
| 43 | 1+(−0.841−0.540i)T2 |
| 47 | 1+(1.36+0.988i)T+(0.309+0.951i)T2 |
| 53 | 1+(−0.257−1.48i)T+(−0.941+0.336i)T2 |
| 59 | 1+(−0.912−0.939i)T+(−0.0285+0.999i)T2 |
| 61 | 1+(0.998+0.0570i)T2 |
| 67 | 1+(1.80+0.822i)T+(0.654+0.755i)T2 |
| 71 | 1+(−0.612−0.561i)T+(0.0855+0.996i)T2 |
| 73 | 1+(0.897+0.441i)T2 |
| 79 | 1+(−0.610+0.791i)T2 |
| 83 | 1+(−0.198+0.980i)T2 |
| 89 | 1+(−0.557+1.89i)T+(−0.841−0.540i)T2 |
| 97 | 1+(−0.684+0.837i)T+(−0.198−0.980i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.934986190208084518726379974252, −8.466872391826870273150620620393, −7.18086821212296350261120334186, −6.22758017209557366202306771889, −5.89185679406313639796174895622, −5.00256470123959033375557458038, −4.33738881330922565709499349432, −3.11793546127480029818981767865, −1.86777785633236591183643471578, −0.942106288488326087079499080449,
1.53053108737128671444430455712, 2.48762022791002308445401607171, 3.52591816037216971934412444119, 4.69916648267959934934147605080, 5.21232760367381729682983333557, 5.96309321103337113045813075060, 6.69041036806088842339703070444, 7.79810258277279810152452139122, 8.399160992048158429750473921751, 9.451653597545489715017204882832