L(s) = 1 | + (−0.921 − 0.388i)3-s + (0.853 − 0.521i)4-s + (−0.411 + 0.911i)7-s + (0.698 + 0.715i)9-s + (−0.988 + 0.149i)12-s + (−1.58 + 0.158i)13-s + (0.456 − 0.889i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (0.969 − 0.246i)25-s + (−0.365 − 0.930i)27-s + (0.124 + 0.992i)28-s + 1.75·31-s + (0.969 + 0.246i)36-s + (0.970 + 0.381i)37-s + ⋯ |
L(s) = 1 | + (−0.921 − 0.388i)3-s + (0.853 − 0.521i)4-s + (−0.411 + 0.911i)7-s + (0.698 + 0.715i)9-s + (−0.988 + 0.149i)12-s + (−1.58 + 0.158i)13-s + (0.456 − 0.889i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (0.969 − 0.246i)25-s + (−0.365 − 0.930i)27-s + (0.124 + 0.992i)28-s + 1.75·31-s + (0.969 + 0.246i)36-s + (0.970 + 0.381i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.925+0.377i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.925+0.377i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.925+0.377i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1466,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.925+0.377i)
|
Particular Values
L(21) |
≈ |
1.051937042 |
L(21) |
≈ |
1.051937042 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.921+0.388i)T |
| 7 | 1+(0.411−0.911i)T |
| 19 | 1+(−0.900+0.433i)T |
good | 2 | 1+(−0.853+0.521i)T2 |
| 5 | 1+(−0.969+0.246i)T2 |
| 11 | 1+(−0.365−0.930i)T2 |
| 13 | 1+(1.58−0.158i)T+(0.980−0.198i)T2 |
| 17 | 1+(0.456+0.889i)T2 |
| 23 | 1+(0.998−0.0498i)T2 |
| 29 | 1+(0.921+0.388i)T2 |
| 31 | 1−1.75T+T2 |
| 37 | 1+(−0.970−0.381i)T+(0.733+0.680i)T2 |
| 41 | 1+(0.969−0.246i)T2 |
| 43 | 1+(−1.39+0.0696i)T+(0.995−0.0995i)T2 |
| 47 | 1+(0.980−0.198i)T2 |
| 53 | 1+(0.456−0.889i)T2 |
| 59 | 1+(0.411−0.911i)T2 |
| 61 | 1+(0.189−0.937i)T+(−0.921−0.388i)T2 |
| 67 | 1+(1.18−0.209i)T+(0.939−0.342i)T2 |
| 71 | 1+(−0.124+0.992i)T2 |
| 73 | 1+(−1.62−1.16i)T+(0.318+0.947i)T2 |
| 79 | 1+(−0.963+1.14i)T+(−0.173−0.984i)T2 |
| 83 | 1+(−0.988+0.149i)T2 |
| 89 | 1+(0.853+0.521i)T2 |
| 97 | 1+(0.114+0.0960i)T+(0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.125158561432769666733925478837, −7.900226896964877874900785755013, −7.24283564483915142424459455778, −6.58073359077743183897772369889, −5.97056008372167601490164906940, −5.18954046465715521443659007248, −4.61528293933584479464200052446, −2.82092545140302331847217827763, −2.36023830339938739383845337704, −0.991071005433459335605816176962,
1.00773125097396495926518628745, 2.55962350837069015070621559795, 3.42916068251288897634729050093, 4.37153878324234146325624660284, 5.10329812210740629423812278359, 6.13937545410443907870006537183, 6.74449755078463292104080797569, 7.44666148392301434192534847548, 7.911694138239223052040029498025, 9.335603100401742517174566807977