L(s) = 1 | + (−0.921 − 0.388i)3-s + (0.853 − 0.521i)4-s + (−0.411 + 0.911i)7-s + (0.698 + 0.715i)9-s + (−0.988 + 0.149i)12-s + (−1.58 + 0.158i)13-s + (0.456 − 0.889i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (0.969 − 0.246i)25-s + (−0.365 − 0.930i)27-s + (0.124 + 0.992i)28-s + 1.75·31-s + (0.969 + 0.246i)36-s + (0.970 + 0.381i)37-s + ⋯ |
L(s) = 1 | + (−0.921 − 0.388i)3-s + (0.853 − 0.521i)4-s + (−0.411 + 0.911i)7-s + (0.698 + 0.715i)9-s + (−0.988 + 0.149i)12-s + (−1.58 + 0.158i)13-s + (0.456 − 0.889i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (0.969 − 0.246i)25-s + (−0.365 − 0.930i)27-s + (0.124 + 0.992i)28-s + 1.75·31-s + (0.969 + 0.246i)36-s + (0.970 + 0.381i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.051937042\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.051937042\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.921 + 0.388i)T \) |
| 7 | \( 1 + (0.411 - 0.911i)T \) |
| 19 | \( 1 + (-0.900 + 0.433i)T \) |
good | 2 | \( 1 + (-0.853 + 0.521i)T^{2} \) |
| 5 | \( 1 + (-0.969 + 0.246i)T^{2} \) |
| 11 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 13 | \( 1 + (1.58 - 0.158i)T + (0.980 - 0.198i)T^{2} \) |
| 17 | \( 1 + (0.456 + 0.889i)T^{2} \) |
| 23 | \( 1 + (0.998 - 0.0498i)T^{2} \) |
| 29 | \( 1 + (0.921 + 0.388i)T^{2} \) |
| 31 | \( 1 - 1.75T + T^{2} \) |
| 37 | \( 1 + (-0.970 - 0.381i)T + (0.733 + 0.680i)T^{2} \) |
| 41 | \( 1 + (0.969 - 0.246i)T^{2} \) |
| 43 | \( 1 + (-1.39 + 0.0696i)T + (0.995 - 0.0995i)T^{2} \) |
| 47 | \( 1 + (0.980 - 0.198i)T^{2} \) |
| 53 | \( 1 + (0.456 - 0.889i)T^{2} \) |
| 59 | \( 1 + (0.411 - 0.911i)T^{2} \) |
| 61 | \( 1 + (0.189 - 0.937i)T + (-0.921 - 0.388i)T^{2} \) |
| 67 | \( 1 + (1.18 - 0.209i)T + (0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.124 + 0.992i)T^{2} \) |
| 73 | \( 1 + (-1.62 - 1.16i)T + (0.318 + 0.947i)T^{2} \) |
| 79 | \( 1 + (-0.963 + 1.14i)T + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.988 + 0.149i)T^{2} \) |
| 89 | \( 1 + (0.853 + 0.521i)T^{2} \) |
| 97 | \( 1 + (0.114 + 0.0960i)T + (0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.125158561432769666733925478837, −7.900226896964877874900785755013, −7.24283564483915142424459455778, −6.58073359077743183897772369889, −5.97056008372167601490164906940, −5.18954046465715521443659007248, −4.61528293933584479464200052446, −2.82092545140302331847217827763, −2.36023830339938739383845337704, −0.991071005433459335605816176962,
1.00773125097396495926518628745, 2.55962350837069015070621559795, 3.42916068251288897634729050093, 4.37153878324234146325624660284, 5.10329812210740629423812278359, 6.13937545410443907870006537183, 6.74449755078463292104080797569, 7.44666148392301434192534847548, 7.911694138239223052040029498025, 9.335603100401742517174566807977