L(s) = 1 | + (−0.318 − 0.947i)3-s + (−0.969 − 0.246i)4-s + (−0.998 + 0.0498i)7-s + (−0.797 + 0.603i)9-s + (0.0747 + 0.997i)12-s + (−0.603 + 1.17i)13-s + (0.878 + 0.478i)16-s + (−0.222 − 0.974i)19-s + (0.365 + 0.930i)21-s + (0.921 + 0.388i)25-s + (0.826 + 0.563i)27-s + (0.980 + 0.198i)28-s + 1.39·31-s + (0.921 − 0.388i)36-s + (−1.60 + 1.09i)37-s + ⋯ |
L(s) = 1 | + (−0.318 − 0.947i)3-s + (−0.969 − 0.246i)4-s + (−0.998 + 0.0498i)7-s + (−0.797 + 0.603i)9-s + (0.0747 + 0.997i)12-s + (−0.603 + 1.17i)13-s + (0.878 + 0.478i)16-s + (−0.222 − 0.974i)19-s + (0.365 + 0.930i)21-s + (0.921 + 0.388i)25-s + (0.826 + 0.563i)27-s + (0.980 + 0.198i)28-s + 1.39·31-s + (0.921 − 0.388i)36-s + (−1.60 + 1.09i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00868i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00868i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5773851090\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5773851090\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.318 + 0.947i)T \) |
| 7 | \( 1 + (0.998 - 0.0498i)T \) |
| 19 | \( 1 + (0.222 + 0.974i)T \) |
good | 2 | \( 1 + (0.969 + 0.246i)T^{2} \) |
| 5 | \( 1 + (-0.921 - 0.388i)T^{2} \) |
| 11 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 13 | \( 1 + (0.603 - 1.17i)T + (-0.583 - 0.811i)T^{2} \) |
| 17 | \( 1 + (-0.878 + 0.478i)T^{2} \) |
| 23 | \( 1 + (0.853 - 0.521i)T^{2} \) |
| 29 | \( 1 + (0.318 + 0.947i)T^{2} \) |
| 31 | \( 1 - 1.39T + T^{2} \) |
| 37 | \( 1 + (1.60 - 1.09i)T + (0.365 - 0.930i)T^{2} \) |
| 41 | \( 1 + (-0.921 - 0.388i)T^{2} \) |
| 43 | \( 1 + (-1.36 + 0.831i)T + (0.456 - 0.889i)T^{2} \) |
| 47 | \( 1 + (0.583 + 0.811i)T^{2} \) |
| 53 | \( 1 + (-0.878 - 0.478i)T^{2} \) |
| 59 | \( 1 + (0.998 - 0.0498i)T^{2} \) |
| 61 | \( 1 + (0.815 - 1.13i)T + (-0.318 - 0.947i)T^{2} \) |
| 67 | \( 1 + (-1.24 + 0.452i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.980 + 0.198i)T^{2} \) |
| 73 | \( 1 + (-0.293 + 0.455i)T + (-0.411 - 0.911i)T^{2} \) |
| 79 | \( 1 + (-0.345 - 1.95i)T + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 89 | \( 1 + (0.969 - 0.246i)T^{2} \) |
| 97 | \( 1 + (0.254 + 1.44i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.910727232323972317516818290221, −8.417494404990972301173773542721, −7.22694415243442312922331502486, −6.77983639450923847517581419097, −6.03483500302449925681683293373, −5.10900883469785557799520486524, −4.45169598391953047771064180093, −3.26615507090109794230970390369, −2.27239968447369710819652815882, −0.908200707154055944671163961136,
0.53755670340749483201835547106, 2.79947811119206093703313204460, 3.46010704498771148495438909861, 4.24437733571727832546668660550, 5.06347052563714553901965333053, 5.73069232977959836613621207126, 6.51626951367571897819637145987, 7.65808354675653694201231440357, 8.402267572006393296632377619629, 9.116017824367670115746089140467