L(s) = 1 | + (−0.318 − 0.947i)3-s + (−0.969 − 0.246i)4-s + (−0.998 + 0.0498i)7-s + (−0.797 + 0.603i)9-s + (0.0747 + 0.997i)12-s + (−0.603 + 1.17i)13-s + (0.878 + 0.478i)16-s + (−0.222 − 0.974i)19-s + (0.365 + 0.930i)21-s + (0.921 + 0.388i)25-s + (0.826 + 0.563i)27-s + (0.980 + 0.198i)28-s + 1.39·31-s + (0.921 − 0.388i)36-s + (−1.60 + 1.09i)37-s + ⋯ |
L(s) = 1 | + (−0.318 − 0.947i)3-s + (−0.969 − 0.246i)4-s + (−0.998 + 0.0498i)7-s + (−0.797 + 0.603i)9-s + (0.0747 + 0.997i)12-s + (−0.603 + 1.17i)13-s + (0.878 + 0.478i)16-s + (−0.222 − 0.974i)19-s + (0.365 + 0.930i)21-s + (0.921 + 0.388i)25-s + (0.826 + 0.563i)27-s + (0.980 + 0.198i)28-s + 1.39·31-s + (0.921 − 0.388i)36-s + (−1.60 + 1.09i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.999−0.00868i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.999−0.00868i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.999−0.00868i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1472,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.999−0.00868i)
|
Particular Values
L(21) |
≈ |
0.5773851090 |
L(21) |
≈ |
0.5773851090 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.318+0.947i)T |
| 7 | 1+(0.998−0.0498i)T |
| 19 | 1+(0.222+0.974i)T |
good | 2 | 1+(0.969+0.246i)T2 |
| 5 | 1+(−0.921−0.388i)T2 |
| 11 | 1+(−0.826−0.563i)T2 |
| 13 | 1+(0.603−1.17i)T+(−0.583−0.811i)T2 |
| 17 | 1+(−0.878+0.478i)T2 |
| 23 | 1+(0.853−0.521i)T2 |
| 29 | 1+(0.318+0.947i)T2 |
| 31 | 1−1.39T+T2 |
| 37 | 1+(1.60−1.09i)T+(0.365−0.930i)T2 |
| 41 | 1+(−0.921−0.388i)T2 |
| 43 | 1+(−1.36+0.831i)T+(0.456−0.889i)T2 |
| 47 | 1+(0.583+0.811i)T2 |
| 53 | 1+(−0.878−0.478i)T2 |
| 59 | 1+(0.998−0.0498i)T2 |
| 61 | 1+(0.815−1.13i)T+(−0.318−0.947i)T2 |
| 67 | 1+(−1.24+0.452i)T+(0.766−0.642i)T2 |
| 71 | 1+(−0.980+0.198i)T2 |
| 73 | 1+(−0.293+0.455i)T+(−0.411−0.911i)T2 |
| 79 | 1+(−0.345−1.95i)T+(−0.939+0.342i)T2 |
| 83 | 1+(−0.0747−0.997i)T2 |
| 89 | 1+(0.969−0.246i)T2 |
| 97 | 1+(0.254+1.44i)T+(−0.939+0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.910727232323972317516818290221, −8.417494404990972301173773542721, −7.22694415243442312922331502486, −6.77983639450923847517581419097, −6.03483500302449925681683293373, −5.10900883469785557799520486524, −4.45169598391953047771064180093, −3.26615507090109794230970390369, −2.27239968447369710819652815882, −0.908200707154055944671163961136,
0.53755670340749483201835547106, 2.79947811119206093703313204460, 3.46010704498771148495438909861, 4.24437733571727832546668660550, 5.06347052563714553901965333053, 5.73069232977959836613621207126, 6.51626951367571897819637145987, 7.65808354675653694201231440357, 8.402267572006393296632377619629, 9.116017824367670115746089140467